GG 140 - Lecture 26 - Isotope Evidence for Climate Change

Isotopes are used to measure past climate properties. Deuterium and oxygen 18 are the most commonly used climate proxies. Lighter isotopes evaporate more readily from the ocean, so water vapor in the atmosphere is isotopically lighter than ocean water. This vapor gets lighter still as it is transported to higher latitudes while losing mass by precipitation. These processes leave an isotopic signal of temperature and continental ice volume in ice cores and deep sea sediment cores.

GG 140 - Lecture 27 - Global Warming

The issue of global warming is discussed. Recent climate change over the last half of the 20th century is thought to be driven largely by greenhouse gas emissions, with carbon dioxide playing a large role. The carbon cycle describes the reservoirs of carbon (atmosphere, terrestrial biomass and ocean) and the exchanges that occur between these reservoirs. Inputs of carbon to the atmosphere include burning of fossil fuels and respiration from biomass.

GG 140 - Lecture 28 - Global Warming II

The current Holocene epoch is considered to be a time period of relatively stable climate compared to earlier geological periods. Still, some significant changes in temperature and sea level did occur. These climatic fluctuations include the Medieval Warm Period and the Little Ice Age, and more recently global warming. Temperature data for the 20th century shows a strong warming from about 1970 to the present day, typically associated with anthropogenic forcing including greenhouse gas and aerosol emissions.

GG 140 - Lecture 29 - Global Warming III

Several greenhouse gas emissions scenarios have been developed by the IPCC to determine possible affects on atmospheric greenhouse gas concentrations and related climate warming. The largest estimates show a carbon dioxide concentration of about 800ppmv by the year 2100. Lower estimates rise to 450ppmv by the year 2100. The amount of projected warming associated with these emissions scenarios range from about 2-4°C. Several possible disadvantages and advantages of such a warming are discussed, as well as possible methods to reduce global warming.

GG 140 - Lecture 30 - Climate Sensitivity and Human Population

Climate sensitivity is defined as either the temperature change resulting from a doubling of atmospheric carbon dioxide concentration or the temperature change resulting from a 1W/m2 increase in radiative forcing. There are several different climate sensitivities that take into account different feedbacks in the climate system. The simplest climate sensitivity is black body sensitivity, which does not account for any feedbacks but gives the temperature change resulting just from a change in radiative forcing.

GG 140 - Lecture 35 - Review and Overview

The material covered throughout the course is reviewed. Properties of air and water are discussed. Hydrostatic balance is discussed as related to the atmosphere, ocean and solid earth. Geostrophic balance is a force balance between the Coriolis force and the pressure gradient force, and applies to winds in the atmosphere as well as currents in the ocean. Several examples of equilibrium states are reviewed. Heat and mass are transported by fluid motion in the earth system through winds, ocean currents and rivers.

GG 140 - Lecture 34 - Renewable Energy

Renewable energy sources are discussed. These include wind energy, solar energy, biomass energy and geothermal energy. Energy from wind is acquired through the use of large wind turbines. These turbines ideally need to be located in areas where there is strong wind and low atmospheric turbulence. Solar power is collected using both photovoltaic solar cells and concentrated solar power. Energy from biomass can be produced in two ways: burning biomass to generate electricity or fermentation to produce fuel ethanol.

GG 140 - Lecture 33 - Energy Resources, Renewable Energy

The various types of resources currently used for energy production are discussed. Energy is primarily used for heating, transportation, and generating electricity. Coal is burned largely to produce electricity and is a major contributor to air pollution with coal power plants emitting carbon dioxides and nitrous oxides. Another major resource used for energy is oil. It is projected that each country either has reached or will reach a peak oil use, after which oil use will decrease.

GG 140 - Lecture 31 - The Two Ozone Problems

There are two ozone problems in the atmosphere. Tropospheric ozone in the form of photochemical smog is sometimes dangerously high whereas stratospheric ozone concentration is sometimes dangerously low. Photochemical smog is created through chemical reactions between UV radiation from the run and nitrogen oxides that are emitted from automobiles. High concentrations of tropospheric ozone are dangerous because of the damage ozone can cause to a person’s airway if it is inhaled. The EPA has specified limits of ozone concentration but several counties in the USA exceed these limits.

GG 140 - Lecture 32 - The Ozone Layer

Stratospheric ozone is important as protection from harmful ultraviolet solar radiation. Ozone in the stratosphere blocks almost all UVC radiation, which is extremely energetic and harmful. Ozone within the ozone layer is destroyed through chemical reactions involving chlorine atoms and the ozone molecules. The main anthropogenic source of chlorine in the atmosphere is chlorofluorocarbons (CFCs). Emissions of CFCs began to increase after 1960 and continued to increase until the 1990s.

Subscribe to Open Yale Courses RSS