GG 140 - Final Exam - Final Exam
The final exam is cumulative and covers Lectures 1 through 35.
The final exam is cumulative and covers Lectures 1 through 35.
The third exam covers Lectures 19 through 28.
Ice on earth is sensitive to climate change and ice plays a role in climate change processes. Recent trends in the Greenland ice sheet provide an important example. Over the past two decades the extent of surface melt water on the ice sheet has increased. In addition, satellites have detected a decrease in the overall mass of the Greenland Ice Sheet. Paleoclimate is also discussed in this lecture, with a focus on climate over the last 5 million years. The mid-Pliocene was a particularly warm period from 3.3-3 million years before present.
Five types of ice in the climate system are discussed. Sea ice forms when ocean water reaches its freezing temperature of about -2°C. Sea ice is currently found in the Arctic Ocean and around Antarctica. Ice sheets form on land and are composed of compacted snow that has accumulated over time. Ice sheets spread over a land surface and can reach the ocean. If the ice continuity is maintained when the ice sheet reaches the ocean, the ice will float on the water and this is referred to as an ice shelf. Icebergs are large chunks of glaciers that break off into the ocean.
The El Niño/Southern Oscillation (ENSO) phenomenon is the primary mode of variability in the equatorial Pacific Ocean. It is composed of two extreme states, El Niño and La Niña. The oscillation between these states can be seen in measurements of sea surface temperature (SST), sea level pressure, thermocline depth, and easterly trade wind strength. Changes in SST and pressure lead to shifting of convective activity across the equatorial Pacific.
Ocean currents are generally divided into two categories: thermohaline currents and wind driven currents. Both types of currents are forced remotely rather than locally. Wind driven currents are initially forced by the wind stress causing water to pile up in certain locations. This produces a pressure gradient, which is then balanced by the Coriolis force and geostrophic currents develop. The gyre circulations found in the Atlantic and Pacific Oceans are wind driven currents. There is a connection between the physics of these currents and the biological productivity in the ocean.
The second exam covers Lectures 11 through 18.
The laboratory for GG 140 consists of five exercises during the semester where the students learn to observe the atmosphere and measure important physical quantities. For Open Yale Courses we present only one of these labs; the Quinnipiac River Field Trip. This field trip introduces the students to the part of the hydrologic cycle where precipitation over the continent returns to the oceans in rivers. During a two-hour tour, we visited five sites along the Quinnipiac River observing temperature, salinity and streamflow.
The first exam covers Lectures 1 through 10.
The final exam is comprehensive in its coverage of the material with an emphasis on the material covered after the second midterm.