BENG 100 - Lecture 8 - Cell Communication and Immunology (cont.)

Professor Saltzman continues his discussion of cell communication in the body, extending the description to the nervous and immune system. Professor Saltzman describes the mode of signal transmission in neurons: action potential in the axon, and neurotransmitter release at the synaptic cleft. He also introduces elements of the innate and adaptive immune system. The adaptive immune system is presented as a host/foreign antigen recognition system involving immune cells (T, B, and macrophages), antibodies, and the major histocompatibility complex 1 and 2.

BENG 100 - Lecture 7 - Cell Communication and Immunology

Professor Saltzman talks about cell communication, specifically ligand-receptor interactions that are important in maintaining homeostasis in the body. Different types of receptors and ligands, the nature of their interactions and ways to apply this into developing drugs are discussed (eg. Aldopa, Taximofen, beta-blockers). Next, Professor Saltzman talks about kinases, phosphatases, cyclic AMP and the mechanism of switching protein states. Three categories of cell communication signals are introduced: autocrine, paracrine, and endocrine.

BENG 100 - Lecture 6 - Cell Culture Engineering (cont.)

Professor Saltzman describes the processes of fertilization and embryogenesis. Professor Saltzman then talks about the definition and classification of different types of stem cells, where stem cells are found in the body, and the potential for use of stem cells in treating diseases. Some challenges in this type of therapy are also discussed. Finally, Professor Saltzman introduces the exponential equation for cell growth, dX/dt = eμt, and the concept of cell “doubling time.”

BENG 100 - Lecture 5 - Cell Culture Engineering

Professor Saltzman reviews the concept of gene therapy, and gives some examples of where this is applied. Methods to help deliver DNA into cells using viruses and cationic lipids are discussed, as a way to overcome some challenges in gene therapy. Next, Professor Saltzman gives a brief introduction into bacterial and mammalian cell physiology. He describes the different tissues in the body, the cell development/differentiation process, the anchorage dependence of mammalian cells that allows them to form an organism, and the extracellular matrix.

BENG 100 - Lecture 4 - Genetic Engineering (cont.)

Professor Saltzman continues his presentation on DNA technology by discussing control of gene expression using two methods of RNA silencing: anti-sense therapy and RNA interference. Molecular cloning techniques to mass-produce proteins using plasmid, restriction enzymes, ligase, and antibiotic selection in bacteria are discussed. Steps and molecules involved in polymerase chain reaction are also described. Professor Saltzman explains how to detect mutations in genomic DNA, such as in sickle cell anemia patients, by gel electrophoresis and Southern blotting.

BENG 100 - Lecture 3 - Genetic Engineering

Professor Saltzman introduces the elements of molecular structure of DNA such as backbone, base composition, base pairing, and directionality of nucleic acids. He describes the processes of DNA synthesis, transcription, RNA splicing, translation, and post-translational processing required to make a protein such as insulin from its genetic code (DNA). Professor Saltzman describes the genetic code. RNA interference is also discussed as a way to control gene expression, which can be applied as a new way to treat diseases.

BENG 100 - Lecture 2 - What Is Biomedical Engineering? (cont.)

Class begins with discussion of students’ answers to the two questions given as assignment in the previous lecture. Professor Saltzman talks about the basic concept of biomedical engineering and two separate aspects of it: gaining better understanding of human physiology and developing ways to improve human health. He then introduces the termhomeostasis, and talks about parameters that are involved in controlling this state. Finally, the structure of the phospholipid is discussed and how it constitutes the cell membrane.

BENG 100 - Lecture 1 - What Is Biomedical Engineering?

Professor Saltzman introduces the concepts and applications of biomedical engineering, providing an overview of the course syllabus, reading materials for lecture and labs and grading logistics. Various pictures are shown to highlight the current application of biomedical engineering technologies in daily life (eg. chest x-ray, PET scan, operating room, gene chip, transport). Next, living standards and medical technologies of the past and present are compared to point out the impact of biomedical engineering as well as areas for improvement in the field.

ASTR 160 - Lecture 24 - The Multiverse and Theories of Everything

Professor Bailyn begins the class with a discussion of a recent New York Times article about the discovery of a new, earth-like planet. He then discusses concepts such as epicycles, dark energy and dark matter; imaginary ideas invented to explain 96% of the universe. The Anthropic Principle is introduced and the possibility of the multiverse is addressed. Finally, biological arguments are put forth for how complexity occurs on a cosmological scale. The lecture and course conclude with a discussion on the fine differences between science and philosophy.

ASTR 160 - Lecture 23 - Other Constraints: The Cosmic Microwave Background

Reasons for the expansion of the universe are addressed at the start of this lecture, focusing especially on the acceleration of dark energy. Supernovae were the first evidence for the existence of dark energy. Two other proofs are presented. The first is the Cosmic Microwave Background, which is a form of electromagnetic radiation that is perfectly smooth and equal in all directions. It firmly supports the Big Bang theory. Projects attempting to measure it, such as COBE and WMAP, are discussed.

Subscribe to Open Yale Courses RSS