Physics 200a Relativity crib sheet Shankar (2006)

Here are some very basic things you should know to do this problem set.

$$
X=(c t, x)=\left(x_{0}, x_{1}\right)
$$

Under a LT

$$
\begin{align*}
x_{1}^{\prime} & =\frac{x_{1}-\beta x_{0}}{\sqrt{1-\beta^{2}}} \tag{1}\\
x_{0}^{\prime} & =\frac{x_{0}-\beta x_{1}}{\sqrt{1-\beta^{2}}}, \tag{2}\\
x_{2}^{\prime} & =x_{2} \tag{3}\\
x_{3}^{\prime} & =x_{3} \tag{4}
\end{align*}
$$

where $\beta=\frac{u}{c}$. Let us forget x_{2}, x_{3}.
Note that we use $x_{0}=c t$ and not just t since x_{0} has the same units as x and the LT looks nice and symmetric. You can check that

$$
X \cdot X \equiv X^{2}=x_{0}^{2}-x_{1}^{2}=x_{0}^{\prime 2}-x_{1}^{\prime 2}=s^{2}
$$

is the same for all observers, an invariant.
A particle of mass m and velocity v has energy E and momentum p given by

$$
\begin{equation*}
E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}} \quad p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}} \tag{5}
\end{equation*}
$$

The energy-momentum vector is

$$
P=\left(P_{0}, P_{1}\right)=\left(\frac{E}{c}, p\right)
$$

It is a pity we need to bring in $\frac{E}{c}$ and not E but this is to make sure both components have the same units (recall $x_{0}=c t$) and LT has the same form as for components of X :

$$
\begin{align*}
P_{1}^{\prime} & =\frac{P_{1}-\beta P_{0}}{\sqrt{1-\beta^{2}}} \tag{6}\\
P_{0}^{\prime} & =\frac{P_{0}-\beta P_{1}}{\sqrt{1-\beta^{2}}} \tag{7}
\end{align*}
$$

Open Yale courses

It follows

$$
P^{2}=P_{0}^{2}-P_{1}^{2}=P_{0}^{\prime 2}-P_{1}^{\prime 2}
$$

is an invariant. What is this invariant value? You can show by explicit calculation using Eq. (5) that

$$
P^{2}=m^{2} c^{2}
$$

Or you can be clever and say that since it is invariant, I will calculate it in the frame moving with the particle. There only $P_{0}=m c$ is nonzero and the result follows. We can also rewrite

$$
P^{2}=(E / c)^{2}-p^{2}=m^{2} c^{2}
$$

as

$$
E^{2}=(c p)^{2}+m^{2} c^{4}
$$

Photons also have energy, which we denote by ω instead of E, and momentum, which we denote by k instead of p. We assemble these onto a four-vector

$$
K=\left(K_{0}, K_{1}\right)=(\omega / c, k)
$$

whose components obey

$$
\omega=k c
$$

This is the same as

$$
K \cdot K \equiv K^{2}=0
$$

In other words $P^{2}=m^{2} c^{2}$ becomes $K^{2}=0$ when applied to massless particles like photons. However massless does not mean momentum-less or energy-less.
In any collision, you set the sum of initial four moments equal to the sum of the final four-momenta. This is really four equations (or two if we set motion along y and z to zero) and sometimes rather than juggle these equations you should think in terms of four vectors and their dot products, as illustrated in class and the notes.
Remember P^{2} same in all frames whether it refers to the momentum of one particle or the sum over many. When P is the momentum of a single particle $P^{2}=c^{2} m^{2}$ regardless how it is moving. When P is the sum of many momenta, such as total of all incoming momenta, P^{2} can by anything, but the same anything for all observers. (Recall the anti-proton creation experiment where the square of the total momentum was evaluated in the CM frame).

Open Yale courses

