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Solutions to PS 13 Physics 201

1. By plugging in the assumed form to the equation, we get

d2(z) 1 dF(t)
CER) = () 1)

Dividing by F(t)y(x),
1 d*yY(z) _ 11 d*F(t) @)
Y(z) dr? vEE(t) diz

The left hand side of this equation is a function of only z, while the right hand side is

a function of only ¢. The only possibility is that both of these are just constant. Then,
we can assume this constant is —(3% with some 3. (Here, (3 is generally a complex
number and adding a - sign gives the same result. But this convention will make the

calculation simpler by use of sin and cos.) This assumption leads to the following two

equations:
d*y
) ®)
and
d*F(t
dt2< ) = —B*°F(t). (4)

The solution to the eq. (3) and (4) is given by

Y(z) = Acos Bz + Bsin iz, (5)
and

F(t) = C cos But + Dsin fut. (6)

However, we have to impose the boundary condition ¢ (0) = ¥(L) = 0. This leads
to A = 0 and 3L = 27m with some integer m. Then, by defining new coefficients
A’ = BC and B' = BD, we finally get

2mm 2mmu 2mmu

(z,t) = sin 7 (A’ cos Tt B'sin 7 t). (7)
Because the string is at rest at ¢ = 0, that is, d’(ﬁ((;‘,o) = 0, we have B’ = 0. Also, from
the condition that ¢ (z,0) = Asin 2”7":1:, we get A' = A and m = n. Therefore,
2mn 2mnou

Y(z,t) = Asin — @ cos t. (8)
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2. (i)The normalized momentum eigenstate is given by

1 : 21N

) = e, 0
Then,

@) =~ ) |y, 0) (10)

= a

-2y ) (12)

S IR @), (13)

Thus, ¥, (z) satisfies Hi,(z) = Eiy,(z) with E = 22002 = F

mL?
(ii)Let’s define normalized wavefunction ¢(x,t) = C4(z,t). From normalization con-

dition, we get
L
1=|CF [ ol 0)ds (14
0

P / (O1tha (@) + 1205 (2 )s () + 120n(2)53(2) + 1605 (0)Pdz (15

= |C]*(9 + 16) = 25|C?, (16)

where the orthonomality of the states was used. We can simply take C=1/5. Finally

we have

B, 0) = Synla) + 5 (x) (17)

(Note that we have only to impose normalization condition at ¢ = 0, because the

conservation of probability holds from the time-dependent Schrédinger equation.)

Noting that time evolutions of 1y(z) and v (x) under the time-dependent Schrodinger

equation are given by

2
_287r ht

U, ) = () T = () mid (18)

and

2
-187“h
—i=51

s, t) = Yy(w)e R = gy (x)e e, (19)
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we get
— 3 7r2 4 s
9o, 1) = gea()emiE + yg(a)e i (20)
3 1 4m 87 ht 4 1 67 _-18‘rrght
=2 'L % Uy +__ez To [y 2 21
5L 5T (21
From this, we have
P(z,t) = [¢(z,t)]* (22)
1.9 12 ax 82 B = 12 . ax 82 6 1872 16
— z % 4 %(ez%ze—ziwgt)*(ez%ze i18 ht) + 2—5(61% e—zi%Lgt)(ez%ze—z%t)* + %}
(23)

1 24 2 10720
= Z{l + 3% cos(—ﬂa: - L15)} (24)
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3. (i)It is useful to define ”characteristic length scale” xy = \/%. Then, we have

(Note that z/x is a dimensionless quantity.) Fig.1 is a plot of this function.

2\1/4
(mx,?)

FIG. 1:

(ii) From normalization condition, we have

/ o ()2 = |A[? / 2emmen/h gy

[e.9]

Using the formula [ e o dp = 5=/ = with a = mw/h, we get

3
PPN CO
2mw V mw 4Am3w3

and therefore,

3,3
A= [Eey
wh
Again using x, ,
4m3w3 1 mwa? 4 1 - 12
— [ Jige on = ige 2°
(o) = [T Yo 5 = [gllae 33

Fig.2 is a plot of this function.

(25)
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(4/mex )™ S ()
X,
FIG. 2:
(iii)
d2¢1<$) d2 _ mwx
dz2 dx? (we™ ")
d MW mwz
A (1-e )
2Mmwr  _ mwa? MW
— A — T 1 —_
{ P -I—( .
mlw?x?  3mMwr.  mes
— A( 2 — > )6 2h
Using this, we find
. h* d*y(z) 1 )
Hiyy(x) = o + gmwe ()

3h 1 1
=A <_w — —mwa® + —mw’s

2 2 2

= %de]l(x)?

and thusHiy (2) = Evy (z) with

(37)
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(i)
/ " (@) ()de = / " Yol (x)dz (38)
= [LS] /_oo e " dz, (39)

TZg [e's)

mwa . .
but this integral is simply 0 because xe™ =  is an odd function of .

(v) Let’s define normalized wavefunction 1 (z,t) = C(z,t). Using the above result,

we have from normalization condition,

1= (0P [ o(e.0)da (40
—ICF [ (Olola O + 1265 a)on(o) + 1200()05 (@) + 6l0n(0)Pde (41
—ICP [ Oliala. O + 2ivn(a)in(z) + 16161 (o)) (12
—ICF* [ (Olola, OF + 16[u ) ) (43)
= 25|C*. (44)

We can simply take C' = 1/5. Then, we have ¢(z,0) = 2¢o(z) + 3¢1(z). (Note that

again we have only to impose normalization condition at ¢ = 0.)

Noting that time evolutions of ¢y(z) and v (x) under the time-dependent Schrodinger

equation are given by

Wole, £) = o(x)e 7 = go(a)e ! (45)
and
(e, t) =t (2)e R = gy (2)e T E, (46)
we get
B, 0) = So(a)eH + Sun(a)e T (47)
- g[:':;]ie—’”% e—i%t 4+ %{4:?;;”3]1%—"“5’5 e it (48)
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Therefore,

P(x,t) = [¢(x, )]

9 [mw]% _mwaQ i 24 /2 mw _mwaQ 16[4m3w3]%
= —[—1]2e —\ ——x —— 2z
25" 7h 25V 1 h 25° wh?
(9 mw N 24 2 mw . 32 /m3w3 2) _m%ﬁ
=(—4/— 4+ —1/——xcCOSW — e
25\ wh 25V 7w R 25
Or,
Pla.) 1 (9 LU G t+32x2) -z
z,t) = — + —V2—cosw ——e %
’ JTxo 25 25 T x 25 22




