
Solutions to PS 12 Physics 201

1.

ψp(x) =
1

L
e

ipx
h̄ (1)

ψ
∗
p(x) =

1

L
e
− ipx

h̄ (2)

= ψ−p(x) (3)

Thus, we have, since ψ(x) is real

Ap =

�
ψ
∗
p(x)ψ(x)dx (4)

=

�
ψ−p(x)ψ(x)dx (5)

=

��
ψ
∗
−p(x)ψ(x)dx

�∗

(6)

= A
∗
−p (7)

and hence

P (p) = ApA
∗
p (8)

= A
∗
−pA−p (9)

= P (−p) (10)

2. For a particle on a ring, we know the lowest energy state is E0 = 0, corresponding to

p = 0. From the condition that the wavefunction ψ(x) be single valued on the ring,

we have that In the first excited state, the particle will have the minimum nonzero

momentum satisfying

e
ipL
h̄ = 1 (11)

pL

h̄
= 2πn (12)

(13)

And thus

p1 =
2πh̄

L
(14)
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giving an energy of

E1 =
p

2
1

2m
(15)

=
2π2

h̄
2

mL2
(16)

The frequency of the emitted photon is then

f =
E1 − E0

h
(17)

=
2π2

h

4π2mL2
(18)

=
h

2mL2
(19)

= 363.7MHz (20)

3. (a) The normalized ground state wavefunction is given by

ψ(x) =

�
2

L
sin

�
πx

L

�
(21)

We note that this, and its square, are symmetric about the point x = L/2.

Noticing that the function x − L/2 is antisymmetric about this same point, we

have from symmetry

0 =

� L

0

�
x− L

2

�
|ψ(x)|2 dx (22)

L

2

� L

0

|ψ(x)|2 dx =

� L

0

x |ψ(x)|2 dx (23)

�x� =
L

2
(24)

Next

�
x

2
�

=

� L

0

x
2 |ψ(x)|2 dx (25)

=
2

L

� L

0

x
2 sin2

�
πx

L

�
dx (26)

=
1

L

� L

0

x
2

�
1− cos

�
2πx

L

��
dx (27)

=
1

L

�
L

3

3
−

� L

0

x
2 cos

�
2πx

L

�
dx

�
(28)

=
L

2

3
+

1

L

� L

0

xL

π
sin

�
2πx

L

�
dx (29)

=
L

2

3
+

L
2

2π2
(30)
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and thus

∆x = L

�
1

12
− 1

2π2
(31)

(b)

�p� =

�
ψ
∗(x)

�
−ih̄

dψ(x)

dx

�
dx (32)

=
�

p

�

p�

�
A
∗
pψ

∗
p(x)Ap�

�
−ih̄

dψp�(x)

dx

�
dx (33)

Now, ψp(x) ∝ exp(ipx/h̄), and thus

−ih̄
dψp(x)

dx
= pψp(x) (34)

Plugging this in, we find

�p� =
�

p

�

p�

�
A
∗
pAp�p

�
ψ
∗
p(x)ψp�(x)dx (35)

=
�

p

�

p�

A
∗
pAp�p

�
δpp� (36)

=
�

p

p |Ap|2 (37)

Where we used orthonormality to do the integral over x.

4. (a)
� ∞

−∞
x

2
e
−αx2

dx = − d

dα

� ∞

−∞
e
−αx2

dx (38)

= − d

dα

�
π

α
(39)

=
1

2α

�
π

α
(40)

(b)

1 =

� ∞

−∞
|ψ(x)|2 dx (41)

= A
2

� ∞

−∞
e
−mωx2

h̄ dx (42)

= A
2

�
πh̄

mω
(43)

A =
�

mω

πh̄

� 1
4

(44)
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(c)

d
2
ψ(x)

dx2
= A

d

dx

�
−mωx

h̄
e
−mωx

2h̄

�
(45)

= A

�
−mω

h̄
+

m
2
ω

2
x

2

h̄
2

�
e
−mωx2

2h̄ (46)

=

�
−mω

h̄
+

m
2
ω

2
x

2

h̄
2

�
ψ(x) (47)

Plugging this in to the eigenvalue equation for E, we find

Eψ(x) = − h̄
2

2m

d
2
ψ(x)

dx2
+

1

2
mωx

2
ψ(x) (48)

=

�
h̄ω

2
− 1

2
mω

2
x

2 +
1

2
mω

2
x

2

�
ψ(x) (49)

=
h̄ω

2
ψ(x) (50)

and thus

E =
h̄ω

2
(51)

(d) Using our result from the first part of the problem, we have easily that

�
x

2
�

= A
2 1

2
�

mω
h̄

�
�

π

mω
h̄

(52)

=
h̄

2mω
(53)

Next, since ψ(x) is even about x = 0 while x is odd, we have by symmetry that

�x� = 0 (54)

Thus

∆x =
�
�x2� =

�
h̄

2mω
(55)

5. Since E > V0, we have that

k =

�
2mE

h̄
2 = 7.25× 1010 1

m
(56)

and

k
� =

�
2m(E − V0)

h̄
2 = 5.12× 1010 1

m
(57)

With these values, we find

B =
k − k

�

k + k�
= 0.172 (58)

C =
2k

k + k�
= 1.17 (59)
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In the case where V0 = 400eV > E, we still have k given by Eq. (56), however k
� now

becomes

k
� =

�
2m(E − V0)

h̄
2 = iκ (60)

Thus we have for B and C

B =
k − iκ

k + iκ
(61)

C =
2k

k + iκ
(62)

Notice that if we let z = k + iκ, we can express B as

B =
z
∗

z
(63)

from which it is evident that

|B| =
|z∗|
|z| = 1 (64)

We know that inside the barrier region,

ψ(x) ∝ e
−κx (65)

and thus, the wave function will fall to 1/e its initial value at

x =
1

κ
= 1.38× 10−11

m (66)

6. (a) Since there is no potential on the ring, we know that energy eigenstates are super-

positions of momentum eigenstates with the same magnitude of the momentum.

Thus, all we can say knowing the energy is that the particle has momentum

p = ±
√

2mE (67)

Since we do not have enough information to determine the relative odds of either

of these values, we cannot compute the probability density.

(b) From the above, the possible values of p are

p = ±
√

2mE (68)

= ±

�

2m
8π2h̄

2

mL2
(69)

= ±4πh̄

L
(70)
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(c) We cannot list the odds of each, because any wave function of the form

ψ(x) = Ae
4πix

L + Be
− 4πix

L (71)

Is an energy eigenstate of the given energy

(d) If either of the allowed values is measured, the wave function after the measure-

ment will be of the form

ψ(x) =
1√
L

e
± 4πix

L (72)

And thus for either value we will have

P (x) = |ψ(x)|2 =
1

L
(73)

7. The wave functions for the n = 2 and n = 3 states are given by

ψ2(x) = A sin

�
2πx

L

�
(74)

ψ3(x) = B sin

�
3πx

L

�
(75)

(76)

Any superposition of these with |A|2 = 1/3 and |B|2 = 2/3 will satisfy the constraint

on the odds. Thus, we can choose any of the distinct wavefunctions

ψ(x) =
1√
3

sin

�
2πx

L

�
+

�
2

3
e

iφ sin

�
3πx

L

�
(77)

with 0 ≤ φ < 2π. Note that every choice of φ in the interval yields a distinct wave

function. As an example, we may choose

ψ+(x) =
1√
3

sin

�
2πx

L

�
+

�
2

3
sin

�
3πx

L

�
(78)

and

ψ−(x) =
1√
3

sin

�
2πx

L

�
−

�
2

3
sin

�
3πx

L

�
(79)

8. We have for the eigenvalue equation in the box

− h̄
2

2m

d
2
ψ(x)

dx2
= Eψ(x) (80)

which is valid for 0 ≤ x ≤ L. We make the ansatz

ψE(x) = Ae
ikx + Be

−ikx (81)
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The constraint that ψ(0) = 0 tells us that

0 = A + B (82)

and so we have

ψE(x) = A
�
e

ikx − e
−ikx

�
(83)

Next, the constraint ψ(L) = 0 tells us

e
ikL = e

−ikL (84)

e
2ikL = 1 (85)

k =
nπ

L
(86)

Plugging this in, we find

d
2
ψE(x)

dx2
= −n

2
π

2

L2
A

�
e

nπx
L − e

−nπx
L

�
(87)

= −n
2
π

2

L2
ψE(x) (88)

and by comparing both sides of the eigenvalue equation we arrive at the result

E =
n

2
π

2
h̄

2

2mL2
(89)

In complete agreement with the result obtained using sin and cos.


