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" Solutions to F'S 12 Physics 201

1.
1 ipe
Uyla) = et (1)
vj(r) = pe ¥ ®)

Thus, we have, since 1 (z) is real

4, = / P2 (@) (0)ds (4)
_ / (@) dz (5)

- < / wip(x)w(x)dx)* (6)

= A*_p (7)
and hence
P(p) = A4, (8)
=44, (9)
= P(-p) (10)

2. For a particle on a ring, we know the lowest energy state is £y = 0, corresponding to
p = 0. From the condition that the wavefunction ¢ (x) be single valued on the ring,
we have that In the first excited state, the particle will have the minimum nonzero

momentum satisfying

ern =1 (11)
L
% = 21 (12)
(13)
And thus
21h
n=— (14)
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giving an energy of

2
D1
E,=— 1
" om (15)
212 h?
=73 (16)
The frequency of the emitted photon is then
Ey — Ey
= — 17
f=2 (17)
2712 h
- 1
4Am2mL? (18)
h
= 1
2mL>? (19)
= 363.TMHz (20)

3. (a) The normalized ground state wavefunction is given by

P(x) = \/%Sin (1—93) (21)

We note that this, and its square, are symmetric about the point x = L/2.

Noticing that the function x — L/2 is antisymmetric about this same point, we

-/ ' <x_ g) (@) de (22)

L[ wwpar= [ P 3

have from symmetry

2
(o) =& (24)
Next
(2%) = L:c2 |9 ()| da (25)
_ % /0 " s (55) d (26)

2 1 [FaL 2rx

== 4+ Zsin( 224 29
35 L), « Sm( L ) v (29)
L? L?

4 (30)
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and thus

1 1
Av=Ly)———
12 272

o= v (-n" ) do
=> Z / A (x) Ay (-m%’;“")) da
Now, 9, (z) o exp(ipxz/h), and thus

- () .
—th— = = p¥p()

Plugging this in, we find
0 =35 [ G, @i
p 7
=N AA G,y
p 7
= Zp |Ap|2
P

Where we used orthonormality to do the integral over x.

4. (a)
/ z2eo% dp = _di e
— 00 a o0
B d |m
- da\l «
B 1 T
20\ «
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(c)

d?y(z) d [ MWT _mws
= A— (— 2 4
da? dx ( o ) (45)
mw  miwia? ms
:A(_h + 2 )e 2h (46)
mw  miw?a?
= (-5 ) v (47
Plugging this in to the eigenvalue equation for F, we find
R () 1 2
Ey(x) = S T + ST P(x) (48)
1 1
= (f%w - §mw2x2 + émw%?) () (49)
hw
= 7¢(~T) (50)
and thus
hw
- = 1
(d) Using our result from the first part of the problem, we have easily that
1 T
()= [T (52)
2(%2) V5
h
= — 53
2mw (53)

Next, since ¢(x) is even about x = 0 while x is odd, we have by symmetry that

(z) =0 (54)
Thus
h
Ar = 2y =4 —— 55
o= VI =5 — (5)
5. Since FE > Vj, we have that
2mE 1
k=T =7.25 x 10— (56)
h m
and
2m(E — 1
Wy PUE 2T gy gl (57)
h m
With these values, we find
k—Fk
B= = 0.172
p— 0.17 (58)
2k
C = =1.17 (59)

k+k
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6.

In the case where Vy = 400eV > E, we still have k given by Eq. (56), however &’ now

becomes
2m(E —
K = M — ik (60)
h
Thus we have for B and C
k—ik
- 61
k4 ik (61)
2k
- 62
k+ ik (62)

Notice that if we let z = k + ik, we can express B as

B = ~ (63)
from which it is evident that
2]
Bl = =1 (64)
We know that inside the barrier region,
U(x) oce™ (65)

and thus, the wave function will fall to 1/e its initial value at

1
r=—-=138x10""m (66)
K

(a) Since there is no potential on the ring, we know that energy eigenstates are super-
positions of momentum eigenstates with the same magnitude of the momentum.

Thus, all we can say knowing the energy is that the particle has momentum
p==EV2mE (67)

Since we do not have enough information to determine the relative odds of either

of these values, we cannot compute the probability density.

(b) From the above, the possible values of p are

p==EV2mE (68)
87m2h°
= 4/2m ;Lz (69)
47th
_ 4o (70)
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(¢) We cannot list the odds of each, because any wave function of the form

4miz 4miz

Y(x)=Ae L + Be L

(71)

Is an energy eigenstate of the given energy

(d) If either of the allowed values is measured, the wave function after the measure-

ment will be of the form

et (72)

(73)

7. The wave functions for the n = 2 and n = 3 states are given by
2mx

o) = s (22 -

Vs(x) = Bsin (?”TT””) (75)

(76)

Any superposition of these with |A|* = 1/3 and |B|* = 2/3 will satisfy the constraint

on the odds. Thus, we can choose any of the distinct wavefunctions

W(z) = % sin (2%7“") + \/geid’ sin (3”7”3) (77)

with 0 < ¢ < 27. Note that every choice of ¢ in the interval yields a distinct wave

function. As an example, we may choose

() = ig sin (%Tx) 4 \/g sin (3”7&7) (78)
o (z) = % sin (2%‘”) - \/g sin <3WTI) (79)

8. We have for the eigenvalue equation in the box

I dP(a)

2m  dz?

and

= EyY(x) (80)
which is valid for 0 < 2 < L. We make the ansatz

Ve(r) = Aek® 4 Be~ihe (81)
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The constraint that ¢(0) = 0 tells us that
0=A+2B

and so we have
¢E((L‘) — A (eikaz . e—ika:)

Next, the constraint (L) = 0 tells us

oL — ikl
eZikL -1

nm

k=—

L

Plugging this in, we find
d2¢E‘<x> n27T2 nwT _nrx
7y P G
n?m?

=~ VE()

and by comparing both sides of the eigenvalue equation we arrive at the result

n2m2h?

p="1"T"
2m L2

In complete agreement with the result obtained using sin and cos.

(87)

(88)

(89)



