PS 12 Physics 201 April 14, 2010 R.Shankar Due April 21.

1. Show that if $\psi(x)$ is real $P(p)=P(-p)$.
2. An electron is in a ring of circumference $L=1 \mu m$. Find the frequency of a photon absorbed when it jumps from the lowest energy state to the one just above it.
3. For a variable V that can take on N values $V_{1}, V_{2}, . . V_{i}, . . V_{N}$, with probabilities $P(i)$, the average or mean is defined as

$$
\begin{equation*}
\langle V\rangle=\sum_{i}^{N} P(i) V_{i} \tag{1}
\end{equation*}
$$

If the variable is continuous like x, the sum is replaced by an integral. So you should not be surprised if the average of x in a state $\psi(x)$ is defined as

$$
\begin{equation*}
\langle x\rangle=\int P(x) x d x=\int \psi^{*}(x) \psi(x) x d x \tag{2}
\end{equation*}
$$

and the average of x^{2} as

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\int \psi^{*}(x) \psi(x) x^{2} d x \tag{3}
\end{equation*}
$$

(i) Find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for a particle of mass m in the ground state of a box of length L. You are encouraged to use symmetry arguments to find $\langle x\rangle$, rather than do integrals.

The technical definition of uncertainty is

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \tag{4}
\end{equation*}
$$

What is Δx for the ground state in a box?
(ii) I claim that in any state $\psi(x)$, the average momentum is

$$
\begin{equation*}
\langle p\rangle=\int \psi^{*}(x)\left(-i \hbar \frac{d \psi(x)}{d x}\right) d x \tag{5}
\end{equation*}
$$

Show that this reduces to

$$
\begin{equation*}
\langle p\rangle=\sum_{p}\left|A_{p}\right|^{2} p \tag{6}
\end{equation*}
$$

by writing $\psi(x)=\sum_{p} A_{p} \psi_{p}(x)$ and similarly for $\psi^{*}(x)$ and putting the two sums into the integral above. (Hint: orthonormality.)
4. HARMONIC OSCILLATOR: VERY IMPORTANT You may assume the following formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}} \tag{7}
\end{equation*}
$$

(i) Differentiate both sides w.r.t α and show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}} \tag{8}
\end{equation*}
$$

(ii) Consider the function

$$
\begin{equation*}
\psi(x)=A e^{-m \omega x^{2} / 2 \hbar} . \tag{9}
\end{equation*}
$$

Choose A to normalize it.
(iii) Consider a harmonic oscillator whose energy in the classical theory is given by

$$
\begin{equation*}
E=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} . \tag{10}
\end{equation*}
$$

so that in the quantum version of the oscillator, the wave function for a state of definite energy obeys

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{E}(x)}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi_{E}(x)=E \psi_{E}(x) . \tag{11}
\end{equation*}
$$

Show that the ψ in Eq. 9 satisfies this equation with $E=\frac{\hbar \omega}{2}$.
(iv) Find $\left\langle x^{2}\right\rangle$ in this state and Δx defined above in Eq. 4.
5. An electron of energy $E=200 \mathrm{eV}$ coming in from $x=-\infty$ approaches a barrier of height $V_{0}=100 \mathrm{eV}$ that starts at $x=0$ and extends to ∞. Compute the reflection and transmission amplitudes B and C given by

$$
\begin{equation*}
B=\frac{k-k^{\prime}}{k+k^{\prime}} \quad C=\frac{2 k}{k+k^{\prime}} . \tag{12}
\end{equation*}
$$

Now consider a barrier $V_{0}=400 \mathrm{eV}$ and find B and C in terms of k and

$$
\kappa=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} .
$$

Show that B has modulus 1 . We know the wave function falls exponentially in the barrier region now. At what x does ψ drop to $1 / e$ of the value at $x=0$?
6. A particle of mass m is in a ring of circumference L. I catch it in a state of energy $E=8 \pi^{2} \hbar^{2} / m L^{2}$. (i) What is the probability density in this state? Argue that you do not have enough information to answer this and explain why. (ii) What are the possible momenta I can get in this state? (iii) Can you list the the odds for each? (iv) What will be $P(x)$ after any one value is measured?
7. Write down two unnormalized, physically distinct (i.e., not multiples of each other) wave functions that describe a particle in a box that has $1 / 3$ chance of being in the $n=2$ state and $2 / 3$ chance of being in the $n=3$ state.
8. Find the energy functions ψ_{E} in a box using $e^{ \pm i k x}$ instead of $\sin k x$ and $\cos k x$.

