
Solutions to PS 7 Physics 201

1. The impedance of the circuit is given by

Z(ω) = R +
1

iωC
+ iωL (1)

= R + i(ωL− 1

ωC
). (2)

Noting the relation between the amplitudes, |I| = |V |/|Z|, we have

|I(ω)|
|Imax|

=
|I(ω)|
|I(ω0)|

=
R�

R2 + (ωL− 1
ωC )2

. (3)

When ω = ω0 ± δ = ω0 ± R/2L, provided δ/ω0 << 1, we have

|I(ω0 ± δ)|
|Imax|

=
R�

R2 + {(ω0 ± δ)L− 1
(ω0±δ)C}2

(4)

=
R�

R2 + {(ω0 ± δ)L− 1
ω0C (1∓ δ

ω0
)}2

(5)

=
R�

R2 + (±δL ± 1
ω0C

δ
ω0

)2
(6)

=
R�

R2 + (R
2 + R

2 )2
(7)

=
1√
2
. (8)

2. From the relation 1/Z// =
�

1/Zi, we get

1

Z
=

1

R
+

1
1

iωC

+
1

iωL
(9)

=
1

R
+ iωC − i

ωL
, (10)

and therefore,

Z =
1

1
R + iωC − i

ωL

=
RωL

ωL + i(ω2CL− 1)R
. (11)
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3. The impedance of the circuit element shown in the figure satisfies the relation

1

Z
=

1
1

iωC

+
1

R + iωL
(12)

= iωC +
1

R + iωL
(13)

= iωC +
R− iωL

R2 + ω2L2
(14)

=
R + i{(R2 + ω2L2)ωC − ωL}

R2 + ω2L2
. (15)

(16)

Noting that Im[Z] =0 ( Z is real.) ⇔ Im[1/Z] =0, we have

Im[Z] = 0⇔ (R2 + ω2L2)ωC − ωL = 0 (17)

⇔ (R2 + ω2L2)C − L = 0, or ω = 0 (18)

⇔ ω = 0,

�
L− CR2

CL2
. (19)

Of course,
�

L−CR2

CL2 is real only if L > CR2. Otherwise, the impedance is real only for

ω = 0 (Note that Z =∞ for ω = 0).

4. As seen in problem 1, the impedance is given by

Z(ω) = R +
1

iωC
+ iωL (20)

= R + i(ωL− 1

ωC
). (21)

Clearly, R1 =100 Ω gives the minimum impedance, and R2 =200 Ω gives the maximum

impedance. Next, we have to consider the imaginary part of the impedance. For

ω = 2000, we get

ωL1 −
1

ωC1
= 2000 s−1 × 1 mH− 1

2000 s−1 × 1 µF
= −498Ω , (22)

ωL1 −
1

ωC2
= 2000 s−1 × 1 mH− 1

2000 s−1 × 100 µF
= −3 Ω, (23)

ωL2 −
1

ωC1
= 2000 s−1 × 2 mH− 1

2000 s−1 × 1 µF
= −496Ω , (24)
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and

ωL2 −
1

ωC2
= 2000 s−1 × 2 mH− 1

2000 s−1 × 100 µF
= −1 Ω. (25)

Therefore, (R1, C2, L2) gives the minimum impedance |Zmin| =
√

1002 + 12 ≈ 100 Ω,

and (R2, C1, L1) gives the maximum impedance |Zmax| =
√

2002 + 4982 ≈ 537 Ω.

5. The impedance Z2 at ω = 500 is given by

Z2(ω = 500) = 15 Ω +
1

i× 500 s−1 × 2 µF
= (15− 1000i) Ω ≈ 1000.1 e−1.556i Ω,

(26)

and the total impedance is

Ztot(ω = 500) = (25− 1000i) Ω ≈ 1000.3 e−1.545i Ω. (27)

Using these, we can calculate the power loss across Z2. However, we have to note

that P2 = I2V2 = Re[Ĩ2]Re[Ṽ2] �= Re[Ĩ2Ṽ2], where Ã is the imaginary expression of

A. (Operations such as derivative or integration commute with an operation of taking

Re[], that is, the order of operations does not matter. Actually, this fact makes use of

complex number convenient for this kind of problems. However, multiplication does

not commute with Re[]. Also note that complex numbers are ”imaginary” tool to

make calculation easier and that physical quantities we can observe in experiments

are always real.) Therefore,

P2 ≡ I2V2 = I(IZ2) = (
V

Ztot
)
V Z2

Ztot
(28)

= Re[
30ei500t[V]

1000.3 e−1.545i Ω
] Re[

30ei500t[V](1000.1 e−1.556i Ω)

1000.3 e−1.545i Ω
] (29)

= 0.900 Re[ei(500t+1.545)] Re[ei(500t−0.011)] [W] (30)

= 0.900 cos(500t + 1.545) cos(500t− 0.011) [W] (31)

= 0.450 {cos(1000t + 1.534) + cos 1.556} [W] (32)

(33)

Also from this, we can easily calculate

(Time average of power loss) = 0.450 cos 1.556 = 6.66 mW. (34)
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6. The electric field between the plates is

E(r) =






V (t)
d (r < a)

0 (r > a),
(35)

where d = 2 cm is the separation between the plates and a = 4 cm is a radius of the

plates. Noting that the capacitance has rotation symmetry about the central axis, we

have from Maxwell equation,

�
B · dl = 2πrBθ(r) = �0µ0

�
dS

∂E

∂t
=

1

c2

�
dS

∂E

∂t
. (36)

Therefore,

B(r) =






r
2c2d

dV (t)
dt eθ (r < a)

a2

2c2rd
dV (t)

dt eθ (r > a),
(37)

where dV (t)
dt = (−200π×200 sin 200πt)V/s, whose amplitude is 40000π V/s. B reaches

its maximum at r = a. With actual numbers plugged in,

|Bmax| =
a

2c2d
|dV (t)

dt
| (38)

=
2cm

2× (3× 108m/s)2 × 4cm
× 40000πV/s (39)

= 1.11× 10−13 T. (40)


