Open Yale courses

© Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed application of the Creative Commons license.

Solutions to PS 7 Physics 201

1. The impedance of the circuit is given by

$$
\begin{align*}
Z(\omega) & =R+\frac{1}{i \omega C}+i \omega L \tag{1}\\
& =R+i\left(\omega L-\frac{1}{\omega C}\right) . \tag{2}
\end{align*}
$$

Noting the relation between the amplitudes, $|I|=|V| /|Z|$, we have

$$
\begin{equation*}
\frac{|I(\omega)|}{\left|I_{\max }\right|}=\frac{|I(\omega)|}{\left|I\left(\omega_{0}\right)\right|}=\frac{R}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} . \tag{3}
\end{equation*}
$$

When $\omega=\omega_{0} \pm \delta=\omega_{0} \pm R / 2 L$, provided $\delta / \omega_{0} \ll 1$, we have

$$
\begin{align*}
\frac{\left|I\left(\omega_{0} \pm \delta\right)\right|}{\left|I_{\max }\right|} & =\frac{R}{\sqrt{R^{2}+\left\{\left(\omega_{0} \pm \delta\right) L-\frac{1}{\left(\omega_{0} \pm \delta\right) C}\right\}^{2}}} \tag{4}\\
& =\frac{R}{\sqrt{R^{2}+\left\{\left(\omega_{0} \pm \delta\right) L-\frac{1}{\omega_{0} C}\left(1 \mp \frac{\delta}{\omega_{0}}\right)\right\}^{2}}} \tag{5}\\
& =\frac{R}{\sqrt{R^{2}+\left(\pm \delta L \pm \frac{1}{\omega_{0} C} \frac{\delta}{\omega_{0}}\right)^{2}}} \tag{6}\\
& =\frac{R}{\sqrt{R^{2}+\left(\frac{R}{2}+\frac{R}{2}\right)^{2}}} \tag{7}\\
& =\frac{1}{\sqrt{2} .} \tag{8}
\end{align*}
$$

2. From the relation $1 / Z_{/ /}=\sum 1 / Z_{i}$, we get

$$
\begin{align*}
\frac{1}{Z} & =\frac{1}{R}+\frac{1}{\frac{1}{i \omega C}}+\frac{1}{i \omega L} \tag{9}\\
& =\frac{1}{R}+i \omega C-\frac{i}{\omega L} \tag{10}
\end{align*}
$$

and therefore,

$$
\begin{equation*}
Z=\frac{1}{\frac{1}{R}+i \omega C-\frac{i}{\omega L}}=\frac{R \omega L}{\omega L+i\left(\omega^{2} C L-1\right) R} . \tag{11}
\end{equation*}
$$

3. The impedance of the circuit element shown in the figure satisfies the relation

$$
\begin{align*}
\frac{1}{Z} & =\frac{1}{\frac{1}{i \omega C}}+\frac{1}{R+i \omega L} \tag{12}\\
& =i \omega C+\frac{1}{R+i \omega L} \tag{13}\\
& =i \omega C+\frac{R-i \omega L}{R^{2}+\omega^{2} L^{2}} \tag{14}\\
& =\frac{R+i\left\{\left(R^{2}+\omega^{2} L^{2}\right) \omega C-\omega L\right\}}{R^{2}+\omega^{2} L^{2}} . \tag{15}
\end{align*}
$$

Noting that $\operatorname{Im}[Z]=0$ (Z is real. $) \Leftrightarrow \operatorname{Im}[1 / Z]=0$, we have

$$
\begin{align*}
\operatorname{Im}[Z]=0 & \Leftrightarrow\left(R^{2}+\omega^{2} L^{2}\right) \omega C-\omega L=0 \tag{17}\\
& \Leftrightarrow\left(R^{2}+\omega^{2} L^{2}\right) C-L=0, \text { or } \omega=0 \tag{18}\\
& \Leftrightarrow \omega=0, \sqrt{\frac{L-C R^{2}}{C L^{2}}} \tag{19}
\end{align*}
$$

Of course, $\sqrt{\frac{L-C R^{2}}{C L^{2}}}$ is real only if $L>C R^{2}$. Otherwise, the impedance is real only for $\omega=0$ (Note that $Z=\infty$ for $\omega=0$).
4. As seen in problem 1, the impedance is given by

$$
\begin{align*}
Z(\omega) & =R+\frac{1}{i \omega C}+i \omega L \tag{20}\\
& =R+i\left(\omega L-\frac{1}{\omega C}\right) . \tag{21}
\end{align*}
$$

Clearly, $R_{1}=100 \Omega$ gives the minimum impedance, and $R_{2}=200 \Omega$ gives the maximum impedance. Next, we have to consider the imaginary part of the impedance. For $\omega=2000$, we get

$$
\begin{align*}
& \omega L_{1}-\frac{1}{\omega C_{1}}=2000 \mathrm{~s}^{-1} \times 1 \mathrm{mH}-\frac{1}{2000 \mathrm{~s}^{-1} \times 1 \mu \mathrm{~F}}=-498 \Omega \tag{22}\\
& \omega L_{1}-\frac{1}{\omega C_{2}}=2000 \mathrm{~s}^{-1} \times 1 \mathrm{mH}-\frac{1}{2000 \mathrm{~s}^{-1} \times 100 \mu \mathrm{~F}}=-3 \Omega \tag{23}\\
& \omega L_{2}-\frac{1}{\omega C_{1}}=2000 \mathrm{~s}^{-1} \times 2 \mathrm{mH}-\frac{1}{2000 \mathrm{~s}^{-1} \times 1 \mu \mathrm{~F}}=-496 \Omega, \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\omega L_{2}-\frac{1}{\omega C_{2}}=2000 \mathrm{~s}^{-1} \times 2 \mathrm{mH}-\frac{1}{2000 \mathrm{~s}^{-1} \times 100 \mu \mathrm{~F}}=-1 \Omega \tag{25}
\end{equation*}
$$

Therefore, $\left(R_{1}, C_{2}, L_{2}\right)$ gives the minimum impedance $\left|Z_{\min }\right|=\sqrt{100^{2}+1^{2}} \approx 100 \Omega$, and $\left(R_{2}, C_{1}, L_{1}\right)$ gives the maximum impedance $\left|Z_{\max }\right|=\sqrt{200^{2}+498^{2}} \approx 537 \Omega$.
5. The impedance Z_{2} at $\omega=500$ is given by

$$
\begin{equation*}
Z_{2}(\omega=500)=15 \Omega+\frac{1}{i \times 500 \mathrm{~s}^{-1} \times 2 \mu \mathrm{~F}}=(15-1000 i) \Omega \approx 1000.1 e^{-1.556 i} \Omega \tag{26}
\end{equation*}
$$

and the total impedance is

$$
\begin{equation*}
Z_{\mathrm{tot}}(\omega=500)=(25-1000 i) \Omega \approx 1000.3 e^{-1.545 i} \Omega \tag{27}
\end{equation*}
$$

Using these, we can calculate the power loss across Z_{2}. However, we have to note that $P_{2}=I_{2} V_{2}=\operatorname{Re}\left[\tilde{I}_{2}\right] \operatorname{Re}\left[\tilde{V}_{2}\right] \neq \operatorname{Re}\left[\tilde{I}_{2} \tilde{V}_{2}\right]$, where \tilde{A} is the imaginary expression of A. (Operations such as derivative or integration commute with an operation of taking $\operatorname{Re}[]$, that is, the order of operations does not matter. Actually, this fact makes use of complex number convenient for this kind of problems. However, multiplication does not commute with Re[]. Also note that complex numbers are "imaginary" tool to make calculation easier and that physical quantities we can observe in experiments are always real.) Therefore,

$$
\begin{align*}
P_{2} & \equiv I_{2} V_{2}=I\left(I Z_{2}\right)=\left(\frac{V}{Z_{\mathrm{tot}}}\right) \frac{V Z_{2}}{Z_{\text {tot }}} \tag{28}\\
& =\operatorname{Re}\left[\frac{30 e^{i 500 t}[\mathrm{~V}]}{1000.3 e^{-1.545 i} \Omega}\right] \operatorname{Re}\left[\frac{30 e^{i 500 t}[\mathrm{~V}]\left(1000.1 e^{-1.556 i} \Omega\right)}{1000.3 e^{-1.545 i} \Omega}\right] \tag{29}\\
& =0.900 \operatorname{Re}\left[e^{i(500 t+1.545)}\right] \operatorname{Re}\left[e^{i(500 t-0.011)}\right][\mathrm{W}] \tag{30}\\
& =0.900 \cos (500 t+1.545) \cos (500 t-0.011)[\mathrm{W}] \tag{31}\\
& =0.450\{\cos (1000 t+1.534)+\cos 1.556\}[\mathrm{W}] \tag{32}
\end{align*}
$$

Also from this, we can easily calculate

$$
\begin{equation*}
(\text { Time average of power loss })=0.450 \cos 1.556=6.66 \mathrm{~mW} . \tag{34}
\end{equation*}
$$

6. The electric field between the plates is

$$
\mathbf{E}(r)= \begin{cases}\frac{V(t)}{d} & (r<a) \tag{35}\\ 0 & (r>a),\end{cases}
$$

where $d=2 \mathrm{~cm}$ is the separation between the plates and $a=4 \mathrm{~cm}$ is a radius of the plates. Noting that the capacitance has rotation symmetry about the central axis, we have from Maxwell equation,

$$
\begin{equation*}
\oint \mathbf{B} \cdot d \mathbf{l}=2 \pi r B_{\theta}(r)=\epsilon_{0} \mu_{0} \int d \mathbf{S} \frac{\partial \mathbf{E}}{\partial t}=\frac{1}{c^{2}} \int d \mathbf{S} \frac{\partial \mathbf{E}}{\partial t} . \tag{36}
\end{equation*}
$$

Therefore,

$$
\mathbf{B}(r)= \begin{cases}\frac{r}{2 c^{2} d} \frac{d V(t)}{d t} \mathbf{e}_{\theta} & (r<a) \tag{37}\\ \frac{a^{2}}{2 c^{2} r d} \frac{d V(t)}{d t} \mathbf{e}_{\theta} & (r>a),\end{cases}
$$

where $\frac{d V(t)}{d t}=(-200 \pi \times 200 \sin 200 \pi t) \mathrm{V} / \mathrm{s}$, whose amplitude is $40000 \pi \mathrm{~V} / \mathrm{s}$. B reaches its maximum at $r=a$. With actual numbers plugged in,

$$
\begin{align*}
\left|B_{\max }\right| & =\frac{a}{2 c^{2} d}\left|\frac{d V(t)}{d t}\right| \tag{38}\\
& =\frac{2 \mathrm{~cm}}{2 \times\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \times 4 \mathrm{~cm}} \times 40000 \pi \mathrm{~V} / \mathrm{s} \tag{39}\\
& =1.11 \times 10^{-13} \mathrm{~T} \tag{40}
\end{align*}
$$

