
Solutions to PS 6 Physics 401a

1. Let B point along the z axis. Then by circuar symmetry, we have

B(r, t) = B(r, t)ez (1)

Using Faraday’s Law, we can find the electric field at radius r to be

�
E(r, t) · dl = − d

dt
B(r, t) · dA (2)

2πrEφ(r, t) = − d

dt

� 2π

0

� r

0

B(r, t)rdrdθ (3)

Since the integral on the right hand side is just the integral of the magnetic field over

the while circle of radius r, we can replace it by the average value B̄(t) of the field

times the area of the circle. Thus

2πrEφ(r, t) = − d

dt
(B̄(t)πr

2
) (4)

Eφ(r, t) = −r

2

dB̄(t)

dt
(5)

E(r, t) = −r

2

dB̄(t)

dt
eφ (6)

Using the relativistically invariant Lorentz force law, we se

dp

dt
= F = −q (E(r, t) + v ×B(r, t)) (7)

= −qr

2

d(B̄(t)

dt
eφ + q (v × ez) B(r, t) (8)

To get the tangential component pT of the momentum, we dot both sides of the Eq.

(8) by the unit vector eφ, which yields

dpT

dt
= −qr

2

d(B̄(t)

dt
+ qeφ · (v × ez) B(r, t)) (9)

Since we are looking for solutions describing circular orbits, we must have that v = veφ,

and thus the second term in the above equation vanishes. Thus,

dpT

dt
= −qr

2

dB̄(t)

dt
(10)

pT (t) = −qr

2
B̄(t) (11)
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and thus the magnitude of the tangential momentum is given by
qr
2 B̄(t).

To find the available radial force, we now dot both sides of Eq. (8) by the unit vector

er. This gives

Fr = −qr

2

dB̄(t)

dt
eφ · er + q (v × ez) · erB(r, t) (12)

= qv · (ez × er) B(r, t) (13)

= −qv · eφB(r, t) (14)

= −qvB0 (15)

Thus the available radial force is qvB0 pointing towards the center of the circle.

δθ

δθ

p

p + pδ

pδ tr

We now want to derive an expression for the rate of change of the radial momentum.

Examining the figures above, we see that

sin δθ ≈ δθ =
δpr

pT
(16)

δpr = pT δθ (17)

but δθ is the angle traversed by the particle in some infinitesimally small time interval

δt, which by definition is equal to

δθ = ωδt (18)
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Thus, we have that

δpr = pT ωδt (19)

δpr

δt
= ωpT (20)

dpr

dt
= ωpT (21)

Combining this with our expressions for pT and Fr, we find

ωpT = qvB0 (22)

ω
qr

2
B̄(t) = qvB0 (23)

�
v

r

�
qr

2
B̄(t) = qvB0 (24)

B̄(t)

2
= B0 (25)

B̄(t) = 2B0 (26)

as expected. Note that nowhere in this argument did we need to use the explicit form

for the relativistically correct momentum.

2. Let a current I flow through the larger loop. Since R1 � R2, we can assume that the

field within the smaller loop is constant, and equal to its value at the center. By the

Biot-Savart law, we can compute its magnitude as

B =
µ0I

4π

�
dl

r2
(27)

=
µ0I

4π

� 2π

0

R2dθ

R
2
2

(28)

=
µ0I

2R2
(29)

Thus, the flux through the inner loop is given by

Φ = BA =
µ0IπR

2
1

2R2
(30)

And therefore the mutual inductance is,

M =
Φ

I
=

µ0πR
2
1

2R2
(31)
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3. Let y be the coordinate of the lower end of the loop, and define y = 0 to be the point

where it initially enters the magnetic field. Then the magnitude of the EMF through

the loop is given by

|E| =

����
dΦ

dt

���� (32)

=
d

dt
(Bwy) (33)

= Bwv (34)

And thus the current through the loop is given by

I =
Bwv

R
(35)

By Lenz’s law, we know that this current must be flowing counterclockwise through

the loop to oppose the increasing flux into the page. Thus, the magnetic force on the

loop is given by

Fb = −IwBey (36)

= −B
2
w

2

R
vey (37)

where we have defined down to be the positive y direction. At terminal velocity, we

know that the acceleration on the loop is zero, and thus the magnetic force exactly

balances the gravitational force. Thus

Mg − B
2
w

2

R
vT = 0 (38)

vT =
MgR

B2w2
(39)

4. With B(t) = B0t, we have that the magnitude of the EMF through the loop is given

by

|E| =

����
dΦ

dt

���� (40)

=
d

dt
(πA

2
B0t) (41)

= πA
2
B0 (42)

The maximum charge on the capacitor is given when the voltage across the capacitor

exactly balances the EMF, and thus

Vcap = |E| = πA
2
B0 (43)
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and finally

Q = CVcap = πA
2
B0C (44)

The orentiation of the charge can be seen in the figure below, via Lenz’s law.

FIG. 1: The X indicates the direction of increasing magnetic flux, and thus by Lenz’s law current

must flow counterclockwise through the loop, depositing positive charge on the bottom end of the

capacitor.

5. (a) Taking the +x direction to be away from the battery, we have that the net EMF

in the loop is given by

E = V − dΦ

dt
(45)

= V − d

dt
(Bwx) (46)

= V −Bwv (47)

(b) The magnetic force is

F = IwBex =
V −Bwv

R
wBex (48)

Thus,

m
dv

dt
=

V wB −B
2
w

2
v

R
(49)
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To integrate this equation, we let

α =
V wB

mR
(50)

β =
B

2
w

2

mR
(51)

Then we have

dv

dt
= α− βv (52)

�
dv

α− βv
=

�
dt (53)

− 1

β
ln (α− βv) = t + D (54)

α− βv = Ce
−βt

(55)

v(t) =
1

β

�
α− Ce

−βt
�

(56)

Since v(0) = 0, we must have

C = α (57)

and therefore

v(t) =
α

β

�
1− e

−βt
�

(58)

=
V

Bw

�
1− e

−B2w2

mR t
�

(59)

6. Looking at the loop composed of R1 and R2, we have by Kirchoff’s law that

V = (I1 + I2)R1 + I2R2 (60)

I2 =
V

R1 + R2
− I1

�
R1

R1 + R2

�
(61)

Next, Looking at the loop containing the inductor and R2 we find

0 = −L
dI1

dt
+ R2I2 (62)

L
dI1

dt
=

V R2

R1 + R2
− I1

�
R1R2

R1 + R2

�
(63)

L
dI1

dt
=

V R2

R1 + R2
− I1R

�
(64)

Asymptotically, we see that

I1(t →∞) =
V

R1
(65)
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Substituting into the equation

I1(t) =
V

R1
+ α(t) (66)

We see that

L
dα

dt
= −R

�
α(t) (67)

dα

α
= −R

�

L
dt (68)

α(t) = Ce
−R�

L t
(69)

Since I1(0) = 0, we must have that

C =
V

R1
(70)

and thus

I1(t) =
V

R1

�
1− e

−R�
L t

�
(71)

7. (a)

ω0 =

�
1

LC
(72)

C =
1

ω
2
0L

(73)

=
1

(2π × 3000Hz)
2
(10mH)

(74)

= 281nF (75)

(b) The total frequency dependent complex impedance is given by

Z(ω) = R + i

�
ωL− 1

ωC

�
(76)

=

�

R2 +

�
ωL− 1

ωC

�2

e
i tan−1

„
ωL− 1

ωC
R

«

(77)

Plugging in the numbers for R,L,C, and ω, we find

Z(2π × 5000Hz) = (225Ω)e
1.11i

(78)

(c) We can write the voltage signal in complex form as

V (t) = �
�
200e

10000πit
�
V (79)
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where � [] denotes the real part. Then, by Ohm’s Law we have

I(t) = �
�

200e10000πit

(225Ω)e1.11i

�
(80)

= 0.89 cos (10000πt− 1.11) A (81)

(d) The average power is given by

�P � = �IV � (82)

= 178 �cos(10000πt) cos(10000πt− 1.11)�W (83)

=
178

2
cos(−1.11)W (84)

= 39.6W (85)

(e) The maximum value of the current is given by

Imax = 0.89A (86)

Thus, by Ohm’s law, the maximum voltage across the resistor is

V
R
max = 89V (87)

the maximum voltage across the inductor is

V
L
max = (10000π)(0.01)(0.89) = 89πV (88)

and finally the maximum voltage across the capacitor is given by

V
C
max =

0.89

(10000π)(281× 10−9)
= 100.7V (89)

These numbers add up to greater than 200V since the maximum voltage drop

across each element do not occur at the same time.

8. At resonance, Z = R, and so the current flowing through the circuit is given by

I(t) =
V (t)

R
= 1.1 cos(100πt)A (90)

We can also solve for L from the resonance condition to find

100π =

�
1

L(20µF )
(91)

L = 0.51H (92)
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Using Ohm’s law in complex form, we thus find that the voltage VLR across the resistor-

inductor segment is given by

VLR(t) = �
�
1.1(100 + i51π)e

100πit
�
V (93)

The maximum value is then given by the amplitude of VLR, which we can see is

V
max
LR = 1.1

�
1002 + (51π)2V (94)

= 207.75V (95)

9. Since we define the charge on the capacitor as

Q =

�
I(t)dt (96)

We have that the voltage drop across the capacitor is opposite in sign to the direction

of the current. Thus, the Kirchoff loop equation gives us

− 1

C

�
I(t)dt− L

dI

dt
− IR = 0 (97)

Substituting in

I(t) = I0e
−αt

(98)

we find

0 =
1

αC
+ αL−R (99)

= α
2
L− αR +

1

C
(100)

α =
R

2L
±

�
R2 − 4L

C

2L
(101)

=
R

2L
±

��
R

2L

�2

− 1

LC
(102)

If R is small enough, we get two complex solutions α+ and α− which are complex

conjugate pairs. The most general solution for I(t) is then

I(t) = I+e
−α+t

+ I−e
−α−t

(103)

For this to be real, we must have

I+ = I
∗
− (104)
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where
∗ denotes the complex conjugate operation. Defining

ω
�
=

�
1

LC
−

�
R

2L

�2

(105)

and letting

I+ =
A

2
e
−iφ

(106)

we have

I(t) =
A

2
e
−iφ

e
− R

2L t
e

iω�t
+

A

2
e

iφ
e
− R

2L t
e
−iω�t

(107)

= Ae
− R

2L t
cos (ω

�
t− φ) (108)

where A and φ are determined by the initial values I(0) and
dI(0)

dt

10. From the Current divider rule given in the problem, we have that the current flowing

through point A is given by

IA = Itot
ZR2 + ZL

ZR1 + ZR2 + ZL + ZC
(109)

and similarly

IB = Itot
ZR1 + ZC

ZR1 + ZR2 + ZL + ZC
(110)

Thus, by Ohm’s law, VA is given by

VA = V − ZCIA (111)

and similarly

VB = V − ZR2IB (112)

Combining these, we find

VA − VB = ZR2IB − ZCIA (113)

=
ZR2 (ZR1 + ZC)− ZC (ZR2 + ZL)

ZR1 + ZR2 + ZL + ZC
(114)

=
R1R2 − i

R2
ωC +

iR2
ωC −

L
C

ZR1 + ZR2 + ZL + ZC
(115)

=
R1R2 − L

C

ZR1 + ZR2 + ZL + ZC
(116)

(117)

Thus, we see that when
L
C = R1R2,

VA − VB = 0 (118)


