
Solutions to PS 5 Physics 201

1. Force acting small part dl of the wire carrying current is given by

F = I dl× B. (1)

By integrating this over the entire loop, the total force is obtained:

Ftot =

�
I dl× B = I (

�
dl)×B = 0. (2)

Suppose two wires which draw two different paths C1 and C2 from A to B are carrying

the same amount of current I. Then, from the above result, it follows that for forces

F1 and F2 acting on the two wire

F1 − F2 =

�

C1

I dl× B−
�

C2

I dl× B (3)

= I (

�

C1

dl−
�

C2

dl)×B (4)

= I

�
dl× B (5)

= 0. (6)

Therefore, F1 = F2, which also holds when C1 is arbitrary and C2 is a straight line.

2. From the balance between centrifugal force and Lorentz force,

m
v2

R
= qvB. (7)

Therefore, we get for the kinetic energy of the particle,

K =
1

2
mv

2 =
1

2
m(

qB

mR
)2 =

q2B2R2

2m
. (8)

In case of protons circulating with K = 4MeV in a magnetic field of 4T,

R =

�
2mK

q2B2
=

�
2× 1.67× 10−21 kg × 4 MeV

1.6× 10−19 C× 4 T
= 72.3 m. (9)

For protons, mc2 = 938 MeV, and therefore when K = 4 MeV, we have

γ ≡ 1�
1− (v/c)2

=
942

938
, (10)
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and

β ≡ v

c
=

�
1− (

938

942
)2 = 0.092. (11)

Therefore, when we expand E as a series of β, that is,

E =
mc2

�
1− β2

= mc
2(1 +

1

2
β

2 +
3

8
β

4 + · · · ), (12)

the third and successive terms are at least β2 = 0.00085 times smaller than the second

term. Therefore, we have K ≈ mc2 1
2β

2 = 1
2mv2.

3. Note that the forces acting on the two parts parallel to x-axis cancel each other.

Therefore, the net force comes from the other two parts directing ±y direction. The

difference between the magnetic field at the left side and the right side is 0.2 T/m ×

0.2 m = 0.04 T. Then, the total force is

|F|tot = I Bright l − I Bleft l (13)

= I (Bright − Bleft) l (14)

= 3 A× 0.04 T× 0.2 m (15)

= 2.4× 10−2 N, (16)

in the positive x direction.

4. In the limit of (δ/R)→ 0, when seen from the tiny element of one loop, the other loop

current looks as if it is straight (Fig 1).

Therefore, we can apply the formula for straight infinite current as an approximation.

That is, the magnetic field created by the upper current at the lower loop is given by

B =
µ0I

2πδ
ey, (17)

where the coordinate is taken as shown in Fig. 1. Therefore the force acting on this

small element is

dF = Idlex ×B = Idlex ×
µ0I

2πδ
ey =

µ0I
2dl

2πδ
ez. (18)
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FIG. 1: Two closely spaced loop currents.

Integrating over the lower loop, we get

F =
µ0I

2R

δ
ez. (19)

As is clear from the result above, the force between the two loops is attractive.

5. By the superposition principle, we can consider the system as an imaginary superpo-

sition of two parts. That is, one is the current in the direction of the actual current,

distributed over the entire cylinder of radius a (denoted by A) and the other is the

current in the opposite direction flowing over the removed region (denoted by cylinder

B) (Fig. 2). For this superposition to reproduce the given current distribution, we

need to assign both currents the same magnitude of current density (current per area)

j = I/(3
4πa2), which is the same as the actual current density.

Using Ampere’s law, we get for B at the centers of the two cylinders as field created

by each other’s current. That is

BA =
µ0Ienclosed

2π a
2

ex =
µ0

I
3
4πa2

πa2

4

πa
=

2µ0I

3πa
ex, (20)

and

BB =
µ0Ienclosed

2π a
2

ex =
µ0

I
3
4πa2

πa2

4

πa
=

2µ0I

3πa
ex. (21)
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FIG. 2: Decomposition of the system into two imaginary parts.

6. In the same way as problem 5, we can consider the system as an imaginary superpo-

sition of currents over three cylinders whose centers are shown by dots in Fig. 3. The

large cylinder marked by 1 carries a current coming out of the paper, and for the other

two cylinders, the currents are in the opposite direction.

a

r1

2

3

B3 B2

B1

A

FIG. 3: The current configuration.
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Using Ampere’s law, and summing fields by these three parts, we get the magnetic

field at the point A shown in Fig. 3, which is in positive-y direction:

B = Btot = [|B1|− |B2| cos θ − |B3| cos θ]ey = [|B1|− 2|B2| cos θ ]ey (22)

= [
µ0Ienclosed,1

2πr
− 2

µ0Ienclosed,2

2π
�

r2 + (a/2)2
cos θ ]ey (23)

= [
µ0

I
1
2πa2 πa2

2πr
− 2

µ0
I

1
2πa2

πa2

4

2π
�

r2 + (a/2)2

r�
r2 + (a/2)2

]ey (24)

= [
µ0I

πr
− µ0Ir

2π{r2 + a2/4} ]ey. (25)

7. Using Biot-Savart’s law, we can calculate magnetic field created by one side of the

square.

Bone side =

� a
2

−a
2

µ0

4π

dx(I, 0, 0)× (−x, a/2, 0)

[(a/2)2 + x2]3/2
(26)

=

� a
2

−a
2

µ0I

4π

dx(0, 0, a/2)

[(a/2)2 + x2]3/2
(27)

= ez
µ0Ia

8π

� a
2

−a
2

dx

[(a/2)2 + x2]3/2
(28)

= ez
µ0I

2πa

� 1

−1

ds

[1 + s2]3/2
(29)

= ez
µ0I

2πa
[

s√
1 + s2

]1−1 (30)

= ez
µ0I

2πa

√
2 (31)

= ez
µ0I√
2πa

(32)

(33)

Noting that 4 sides of the square give the same contribution, we finally get

B = 4Bone side = ez
2
√

2µ0I

πa
(34)
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8. First, we can think of the system of a superposition of B1, B2, and B3 in Fig. 4.

B1 B2 B3z

dl

2a
r

dl O

a) b) c)

d) e)

O

x

y

dl’

-r

I

I

FIG. 4: Current elements for calculation.

To evaluate B1 and B2, we note that the magnetic field at the center O created by

the small element shown in Fig. 4(d) is given by

dB =
µ0I

4π

dl× (0− l)

|l| =
µ0I

4πa
|dl| ez, (35)

which is always pointing the positive-z direction and whose magnitude is proportional

to the arc length. So we easily get

B1 + B2 =
µ0I

4πa
3πa ez =

3µ0I

4
ez. (36)

Next, let’s consider B3. For this purpose, it is good to first show that a small element

dl (at r = (a, l, 0)) and an imaginary current element dl� shown in the Fig. 4 (e) give

the same contribution to B.

The field element created by the small element dl can be calculated using Biot-Savart’s
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law:

dB =
µ0I

4π

dl× (0− r)

|r| (37)

=
µ0I

4π

(0, dl, 0)× (−a,−l, 0)√
a2 + l2

(38)

=
µ0I

4π

a dl√
a2 + l2

ez. (39)

And in the same way, dl� gives,

dB� =
µ0I

4π

dl� × (0− (−r))

|r| =
µ0I

4π

(0,−dl, 0)× (a, l, 0)√
a2 + l2

=
µ0I

4π

a dl√
a2 + l2

ez, (40)

which is equivalent to that by dl. Thus, it follows that the field created by the two semi-

infinite currents are equivalent to that created by a single infinite current. Therefore,

B3 =
µ0I

2πa
ez. (41)

Finally, we get the total field,

B = (
3µ0I

4
+

µ0I

2πa
)ez. (42)

9. (i) As in usual image charge problems, for y = 0 plane to be an equipotential surface,

we need to imagine a pair of charges q and q
� located at (0, Y, Z) and (0,−Y, Z). For

x = 0 plane, a pair of charges at (0, Y, Z) and (0, Y,−Z) are needed. Therefore, we

should put image charge −q at (0,−a, a) and (0, a,−a), and q at (0,−a,−a). Then,

the attraction between the charge and the plates is the same as that between the

charge and the image charges. Therefore, we get

F = +
−q2

4π�0(2a)2
ey +

−q2

4π�0(2a)2
ez +

q2

4π�0(2
√

2a)2

1√
2
{ey + ez} (43)

= −(4−
√

2)q2

64π�0a
2

ey −
(4−

√
2)q2

64π�0a
2

ez (44)

(ii)When the charge is at infinity, the potential energy is 0. Let’s take a path from

infinity to (a,a) on the line y = z, x = 0, parametrized by {(0,−s,−s), (s : −∞ →
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−a)} Therefore,

Wneeded =

� (a,a)

∞
−F · dl (45)

=

� −a

s=−∞
{(4−

√
2)q2

64π�0s
2

ey +
(4−

√
2)q2

64π�0s
2

ez} · {(−ds)(ey + ez)} (46)

= −{(4−
√

2)q2

32π�0

� −a

s=−∞

1

s2
ds (47)

= −(4−
√

2)q2

32π�0a
. (48)

(49)

(iii) Let’s consider x = 0 plane. If we think independently 4 pairs of charge, that is,

(±a, a, a), (±a,−a, a), (±a, a,−a), and (±a,−a,−a), each of these pairs gives equipo-

tential surface x = 0, as is in an usual image charge problem. Therefore, from the

superposition principle, all the eight charges combined also give an equi-potential sur-

face x = 0.

10. Using Ampere’s law, magnetic field created by the strip at the wire is given by

Bby strip =

� w

0

dl
µ0

I
w

2π(a + l)
(50)

=
µ0I

2πw
[ln(a + l)]w0 (51)

=
µ0I

2πw
ln

a + w

a
. (52)

Therefore, the force per unit length between the wire and the strip is given by

F = IBby strip =
µ0I

2

2πw
ln

a + w

a
. (53)

In the limit of w → 0, this gives

F =
µ0I

2

2πw
ln(1 +

w

a
) =

µ0I
2

2πw
{w

a
− 1

2
(
w

a
)2 + · · · }→ µ0I

2

2πa
, (54)

which reproduces the force between the two straight currents.

11. From the result of Problem 1, the force acting on the arc PQ is equivalent to a force

acting on an imaginary straight current flowing from P to Q (Fig. 5). Therefore,

F = −IB |PQ| ey. (55)

= −2IB
√

R2 − a2 ey. (56)

(57)
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FIG. 5: Arc-shape current and equivalent straight current flowing from P to Q.

12. From the balance between the forces, we get

kδ + IBL−mg = 0. (58)

Therefore,

k =
−IBL + mg

δ
=
−2 A× 0.2 T× 2 m + 0.12 kg × 9.8 m/s2

0.012 m
= 31.3 N/m (59)

13. (i)By applying Ampere’s law to the red loop shown in Fig. 6, we can calculate the

magnetic field at distance r from the center axis:

B(r) =
µ0Ienclosed

2πr
=

µ0NI

2πr
(60)

Integrating this over the hatched square, we get

Φ =

�

Square

B dS = a

� R+a
2

R−a
2

B(r)dr (61)

=
µ0NIa

2π

� R+a
2

R−a
2

1

r
dr (62)

=
µ0NIa

2π
ln[

R + a
2

R− a
2

] (63)

(64)
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FIG. 6: Toroidal solenoid.

(ii)Using the result above,

Estored =

�
dV

B2

2µ0
(65)

=

�
dzdr(rdθ)

µ0N
2I2

8πr2
(66)

=
µ0N

2I2

8π
a2π

� R+a
2

R−a
2

dr
1

r
(67)

=
µ0N

2I2a

4
ln[

R + a
2

R− a
2

]. (68)

(iii) Because the energy stored in the solenoid is given by 1
2LI2, from the result of part

(ii), we get

L = 2E/I
2 =

µ0N
2a

2
ln[

R + a
2

R− a
2

]. (69)

(iv)

E = L
dI

dt
= −LI0ω sin ωt =

−µ0N
2I0ωa

2
ln[

R + a
2

R− a
2

] sin ωt (70)

14. (i) Just before the switch is closed, the circuit has been carrying a current I0 = V/R2.

Just after the switch is closed, we can think that the flowing current remains the same.

That is,

I = V/R2. (71)
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(Although this is not required, we can also calculate VL using the relation V =

I(R1//R2) + L
dI
dt . That is, VL = L

dI
dt = V − I(R1//R2) = V − V

R2

R1R2
R1+R2

= V R2
R1+R2

.)

(ii) In this limit (t → ∞), the system is stable. That is, dI
dt = 0. Then, from V =

I(R1//R2) + L
dI
dt , we get

I =
(R1 + R2)V

R1R2
. (72)

(iii) We can think in the same way as part (i). Just before the switch is opened,

I = (R1+R2)V
R1R2

. And just after the switch is closed, the current remains the same.

Therefore,

VR2 = IR2 =
(R1 + R2)V

R1
. (73)


