
Solutions to PS 4 Physics 201

1. (a) Below is a labelled diagram of the situation. We place the center of the sphere

which we are averaging over at the origin.
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The potential due to the point charge q at a point on the surface of the sphere is

given by

V (R) =
keq

r�
(1)

By the law of cosines, we can write

r�2 = r2 + R2 − 2rR cos θ (2)

r� =
√

r2 + R2 − 2rR cos θ (3)

Using this, we can find the average of V over the sphere using the integral given

V̄ =
1

4πR2

� π

0

� 2π

0

keq√
r2 + R2 − 2rR cos θ

R2 sin θdφdθ (4)

=
1

2

� π

0

keq√
r2 + R2 − 2rR cos θ

sin θdθ (5)

=
1

2

� 1

−1

keq√
r2 + R2 − 2rRx

dx (6)

(7)
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Next, using the substitution

u = r2 + R2 − 2rRx (8)

du = −2rRdx (9)

we find

V̄ = − 1

4rR

� (r−R)2

(R+r)2

keq√
u
du (10)

=
keq

2rR
[(R + r)− (r −R)] (11)

=
keq

r
= V (0) (12)

But V (0) is exactly the potential due to the point charge evaluated at the center

of the sphere, as desired.

(b) Assuming the sphere is fixed, the energy needed to bring the point charge to a

distance r from the sphere is simply

U = qVsphere(r) (13)

But since the charge Q is glued uniformly to the sphere, we know that Vsphere(r)

is simply the same as the potential due to a point charge, and thus

U =
keqQ

r
(14)

= QV (0) (15)

On the other hand, we can consider the point charge fixed, in which case the

energy is given by

U =

�
keqdQ

r�
(16)

where r� is the distance between the point charge q and an infinitesimal element

dQ of charge on the surface of the sphere. However, because the charge is dis-

tributed uniformly, we have

dQ =
Q

4πR2
R2 sin θdθdφ (17)

and thus we find

U =
1

4πR2

�
keQq

r�
R2 sin θdθdφ (18)

= QV̄ (19)
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Thus, equating our two expressions for U , we find the desired result

V (0) = V̄ (20)

(c) Assume that V (r) has a maximum at r = r0. Then, by the definition of a

maximum, the value of V on the surface of a sphere of radius � around r0 must

be strictly less than V (r0). But that means that the average V̄ of V over this

sphere is also strictly less than V (r0). But we have just shown that V̄ must equal

V (r0) in a charge free region. Thus, we have a contradiction, and V cannot have

a maximum at r0. The same argument also holds for minima of V , in which case

we find V̄ > V (r0).

(d) Let r0 be a point of stable equilibrium - i.e. a minimum - of V in a charge-free

region. Then for any sufficiently small number �, and any unit vector n̂ we must

have that

V (r0 + �n̂) > V (r0) (21)

in particular, this implies that the derivative of V is positive at all points in a

sphere of radius � of r0, which implies that the electric field points towards r0 for

all points on the boundary of that sphere. Thus, the electric flux through that

sphere must be strictly less than 0. But by Gauss’ law, this implies that there

must be negative charge within the sphere, which is a contradiction, and thus no

such minimum can exist. For a maximum of V , we find that the electric field

must point away from r0 on the surface of the sphere, leading to a net positive

flux and thus the presence of a positive charge, which is still a contradiction

2. Assume V1(r) and V2(r) satisfy the same boundary conditions at each of the conducting

surfaces, as shown below.

Then at each of these surfaces, the function

W (r) = V1(r)− V2(r) (22)
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must vanish. Also note that as the superposition of two potential functions, W itself

is also a valid electrical potential. Now, assume W (r) is nonzero at some point r0 in

the region between the conductors. Then, since W vanishes on the outer conducting

surface, it follows from the continuity of W that it must attain either a maximum

or a minimum value in the region free of conductors (at least as large in magnitude

as W (r0)). But this contradicts the result derived in Problem 1 that the potential

cannot have a maximum or a minimum in a charge free region. Thus, W must vanish

everywhere, and thus

V1(r) = V2(r) (23)

at all points.

3. We know that for the circuit described,

I(t) =
E
R

e−
t

RC (24)

Q(t) = CE
�
1− e−

t
RC

�
(25)

Next, we know that the time-rate change of the work done by the battery - its output

power - is given by

Pbat = IE =
E2

R
e−

t
RC (26)

From Ohm’s law, we also have that the power dissipated by the resistor is given by

Pres = I2R =
E2

R
e−

2t
RC (27)
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Finally, the rate of change of energy stored in the capacitor is given by

Pcap =
d

dt

�
Q2

2C

�
(28)

=
d

dt

�
CE2

2

�
1− 2e−

t
RC + e−

2t
RC

��
(29)

=
E2

R
e−

t
RC − E2

R
e−

2t
RC (30)

= Pbat − Pres (31)

Thus, we have that

Pbat = Pcap + Pres (32)

which, upon integrating, gives

Wbat(t) = Ecap(t) + Eres(t) (33)

as desired.

4. (a) We demand that V = 0 at the point on the sphere closest to the point charge,

and at the point farthest from the point charge.

q

r

(a,0,0)
R

(b,0,0)
q'

Examining the figure above, we see that closest to the point charge, we have for

the potential

V = 0 =
keq

a−R
+

keq�

R− b
(34)

−q�(a−R) = q(R− b) (35)

Farthest from the point charge, we have

V = 0 =
keq

a + R
+

keq�

R + b
(36)

−q�(a + R) = q(R + b) (37)
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Adding these two equations, we find

−2q�a = 2qR (38)

q� = −q
R

a
(39)

As desired. Substituting this result back into the second equation yields

q
R

a
(a + R) = q(R + b) (40)

q
R2

a
= qb (41)

b =
R2

a
(42)

Using the law of cosines, we can show now that these values of q� and b make the

potential vanish over the whole sphere. At any point on the sphere we have

V =
keq

x
+

keq�

y
(43)

=
keq

x
− keqR

ay
(44)

From the diagram given, we see that the law of cosines gives

x =
√

a2 + R2 − 2aR cos θ (45)

and

y =
√

R2 + b2 − 2Rb cos θ (46)

Plugging these in to the expression for V , we get

V =
keq√

a2 + R2 − 2aR cos θ
− keqR

a
√

R2 + b2 − 2Rb cos θ
(47)

= keq



 1√
a2 + R2 − 2aR cos θ

− 1

a
R

�
R2 + R4

a2 − 2Rb cos θ



 (48)

= keq

�
1√

a2 + R2 − 2aR cos θ
− 1√

a2 + R2 − 2aR cos θ

�
(49)

= 0 (50)

(b) To find the surface charge density, we start by using the image charge method to

find the potential everywhere outside the sphere. Since the sphere is conducting,
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we also have that the potential is constant inside the sphere. Differentiating the

potential, we can get the electric field everywhere outside the sphere. Finally,

since the sphere is a conductor, we know the field inside is zero. Thus, using the

relationship between change in electric field across a boundary and the surface

charge density on that boundary derived from Gauss’ law, we have

σ(R) = �0E(R) · er (51)

where R is a vector from the center of the sphere to a point on its surface, and

er is a unit vector pointing outward from the sphere.

By looking at a sphere surrounding the conductor, Gauss’ law tells us that the

total induced charge on the sphere needs to be the same as the image charge q�.

(c) The force between the sphere and q is just the force of attraction between the

image charge and q. Thus, we have

F =
keqq�

(a− b)2
er (52)

= − keq2R

a
�
a− R2

a

�2er (53)

= − keq2Ra

(a2 −R2)2er (54)

(d) To solve the case of an isolated, neutral sphere, we need to balance out the

induced charge of q� = −R
a q on the sphere while still maintaining the sphere as

an equipotential surface. This can be done by adding a second image charge of

q�� = R
a q at the center of the sphere. Doing this, we find the force on the charge

q to be

F = Fgrounded +
keqq��

a
er (55)

=

�
keq2R

a3
− keq2Ra

(a2 −R2)2

�
er (56)

(e) Similar to above, if the sphere is isolated with initial charge Q, we can add a

second image charge at the center of the sphere of magnitude q�� = R
a q + Q. This
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yields a force on the point charge of

F = Fgrounded +
keqq��

a
er (57)

=

�
keq

�
qR

a + Q
�

a2
− keq2Ra

(a2 −R2)2

�
er (58)

5. Equating the centripetal force with the magnetic force, we find

mv2

r
= qvB (59)

v

r
=

qB

m
(60)

ω =
qB

m
(61)

2π

T
=

qB

m
(62)

where ω is the angular frequency and T is the period. Solving for B we get

B =
2πm

qT
(63)

letting q be the charge of an electron, m be the mass of an electron, and T = 1µs, we

find

B = 3.57× 10−5Tesla (64)

6. We label the currents flowing through each element as shown in the figure below.

We assume there is a current I flowing into terminal A, and thus a current I flowing

out of terminal B. We can see that if we instead were to let the current flow from B

to A, that it would face the same resistor paths. This symmetry implies that

I2 = I4 (65)

I1 = I3 (66)

Also, by current conservation, we need

I = I1 + I2 (67)

I5 = I2 − I3 = I2 − I1 (68)
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This means that we can write

I2 = xI (69)

I1 = (1− x)I (70)

I5 = (2x− 1)I (71)

where x is some number between zero and one. Since the total voltage around any

closed loop is zero, we need

RI2 + RI5 = 2RI1 (72)

3x− 1 = 2− 2x (73)

x =
3

5
(74)

Thus, the voltage drop between A and B must be

V = 2RI1 + RI4 (75)

=
4

5
RI +

3

5
RI (76)

=
7

5
RI (77)

From which we see that the equivalent resistance is

Req =
7

5
R (78)
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7. (a) For convenience, the diagram for this circuit has been reproduced below.

If the switch S has been closed for a very long time, then we know the capacitor

will be fully charged, and thus the current flowing through it must be zero.

(b) Since no current is flowing through C, no current can flow through R3, and thus

the resistors R1 and R2 are effectively connected in series. Thus, the current

flowing through them is given by

I =
V

Req
=

V

R1 + R2
(79)

(c) We know that the voltage on C must be the same as the voltage drop across the

resistor R2. Thus,

VC = V − IR1 (80)

= V − R1V

R1 + R2
(81)

=
R2V

R1 + R2
(82)

The charge on the capacitor is then

Q = CVC =
CV R2

R1 + R2
(83)

(d) When the switch S is opened, the only complete circuit has the capacitor C

connected in series with resistors R2 and R3. Thus, the capacitor with discharge

through an equivalent resistance of Req = R2 + R3.

(e) Based on the above, we have that the time constant for the decay is given by

τ = ReqC = C(R2 + R3) (84)
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(f) Putting in the numbers, we find that the current flowing through R1 and R2 with

the switch closed is given by

I =
9V

9kΩ
= 1mA (85)

Similarly, the charge on the capacitor is given by

Q =
(100µF )(9V )(5kΩ)

9kΩ
= 500µC (86)

And lastly, the time constant is given by

τ = (100µF )(6kΩ) = 0.6s (87)

8. Consider a Gaussian surface between the two conductors that completely encloses the

inner conductor. We have by Ohm’s law that the current flowing across this surface is

I =

�
J · dA (88)

=

�
σE · dA (89)

= σ
Q

�0
(90)

=
σCV0

�0
(91)

Where Q is the charge on the inner conductor, and we have used Q = CV0 by the

definition of capacitance

9. We solve this problem by conservation of energy.

Lw

B
I

From the figure above, it can be seen that magnitude of the magnetic force on the

cylinder is given by

F = IwB (92)
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directed down the rods. Thus, at the time the cylinder exits, the magnetic force has

done work

W = ILwB (93)

This work is equal to the change in kinetic energy of the cylinder. Since the cylinder

begins at rest, its initial kinetic energy is 0, and thus

ILwB = Kf =
1

2
Mv2 +

1

2
Iω2 (94)

Letting R denote the radius of the cylinder, its moment of inertia is given by

I =
1

2
MR2 (95)

while the rolling without slipping condition gives

ω =
v

R
(96)

Therefore

ILwB =
1

2
Mv2 +

1

4
Mv2 =

3

4
Mv2 (97)

v =

�
4BLIw

3M
(98)


