
Solutions to PS 3 Physics 201

1. ∂
∂y (x2y) = ∂

∂x(x3

3 ) = x2. That is, ∂Fx
∂y = ∂Fy

∂x . Therefore, F can be written in the form

of F= −∇U(x, y) with some function U(x, y), which means that F is conservative.

From −∂U
∂x = x2y, U =

�
−x2y dx = −1

3x
3y+C(y), and then from −∂U

∂y = x3

3 −C �(y) =

x3

3 , we get C(y)=const. So finally, U(x, y) = −1
3x

3y+const.

Using this potential,

� (2,3)

(0,0)

F · dr =

� (2,3)

(0,0)

−∇U(x, y) · dr = −U(2, 3) + U(0, 0) = 8. (1)

2.

1.6× 103J

10V
= 1.6× 102 Coulomb (2)

= 1.6× 102 Coulomb × 6.24× 1018 electrons

1 Coulomb
(3)

= 1.0× 1019 electrons. (4)

3. The potentials at (1,1) and (2,2) are given by

V (1, 1) =
1

4π�0

(2 µC)√
12 + 12 m

+
1

4π�0

(−3µC)√
0.82 + 0.52 m

, (5)

V (2, 2) =
1

4π�0

(2 µC)√
22 + 22 m

+
1

4π�0

(−3µC)√
1.82 + 1.52 m

. (6)

Therefore,

(Work needed) (7)

= V (2, 2)× 2 µC− V (1, 1)× 2 µC (8)

=
1

4× 3.14× 8.85× 10−12 C2J−1 m−1
(9)

× ((
4× 10−12 C2

2.83 m
− 6× 10−12 C2

2.34 m
)− (

4× 10−12 C2

1.41 m
− 6× 10−12 C2

0.94 m
)) (10)

= 2.16× 10−2 J (11)
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4. The potential created by a dipole is given by

V (r,θ ) = V (x, y) =
p

4π�0

cos θ

r2
=

p

4π�0

r cos θ

r3
=

p

4π�0

x

[x2 + y2]3/2
. (12)

First, in cartesian coordinate,

E = −∇V = −i
∂V

∂x
− j

∂V

∂y
(13)

= −i
p

4π�0

[x2 + y2]3/2 − x · 3
2 [x

2 + y2]1/22x

[x2 + y2]3
− j

p

4π�0

−3

2

2y

[x2 + y2]5/2
(14)

= i
p

4π�0

(2x2 − y2)

[x2 + y2]5/2
+ j

p

4π�0

3xy

[x2 + y2]5/2
(15)

In polar coordinate, using the fact that ∇ = er
∂
∂r + eθ

1
r

∂
∂θ , we get

E = −∇V = −er
∂

∂r
(

p

4π�0

cos θ

r2
)− eθ

1

r

∂

∂θ
(

p

4π�0

cos θ

r2
) (16)

=
p

4π�0

2 cos θ

r3
er +

p

4π�0

sin θ

r3
eθ, (17)

which can be easily shown to be the same as the result in cartesian coordinate, noting

that er = i (x
r ) + j (y

r ) and eθ = −i (x
r ) + j (x

r ).
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5. V=0 surface is determined by

q�
(x− a)2 + y2 + z2

+
−2q�

x2 + y2 + z2
= 0 (18)

⇔ q2

(x− a)2 + y2 + z2
=

4q2

x2 + y2 + z2
(19)

⇔ x2 + y2 + z2 = 4{(x− a)2 + y2 + z2} (20)

⇔ (x− 4a

3
)2 + y2 + z2 = (

2a

3
)2 (21)

This gives the surface of a sphere of radius 2a
3 , with the center at (4a

3 , 0, 0) (FIG. 1).

O x

y

x x
(4a/3,0,0)(a,0,0)

x
-2q +q

V=0  surfacez

2a/3

FIG. 1: V=0 surface.

V=const. surface appears if there is a grounded metal surface in the system. The

result of this problem can be used to obtain the potential created by a point charge

located inside or outside a metallic shell. This is a special case of the general result

that when charge Q is put at a distance r from the center of a sphere of radius R,

the image equals −(RQ/r) and is located R2/r from the center towards the external

charge. (In our example R = 2a/3 and r = 4a/3.) You will be guided towards a proof

of this result in PS4.
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6. The uniform charge density per area is ρ = Q
πR2 . The potential is calculated as the sum

of the potential created by the charge located at tiny part of the disc, and therefore,

V =

�

disc

1

4π�0

ρdS√
r2 + z2

(22)

=

� R

0

rdr

� 2π

0

dθ
1

4π�0

ρ√
r2 + z2

(23)

=
1

2�0

Q

πR2
[
√

r2 + z2]r=R
r=0 (24)

=
Q

2π�0R2
[
√

R2 + z2 −
√

z2] (25)

=
Q

2π�0R2
[
√

R2 + z2 − |z|] (26)

In the limit of |z|→∞,

V =
Q

2π�0R2

R2

�
R2 + |z|2 + |z|

→ Q

4π�0|z|
, (27)

which coincides with the potential created by a point charge Q at the origin.

Also, in the limit of |z|→ 0,

V =
Q

2π�0R2
[−|z| +

�
R2 + |z|2] =

Q

2π�0R2
[−|z| + R +

|z|2

2R
+ · · · ] (28)

→ Q

2π�0R
− Q|z|

2π�0R2
. (29)

Next, the electric field in the z direction at (0, 0, z) can be calculated by differentiating

potential with z. That is, in the region of z ≈ 0, by differentiating Eq. (29), we get

Ez = −∂V

∂z
(30)

=
Q

2π�0R2

∂|z|
∂z

(31)

=
Q

2π�0R2

z

|z| . (32)

In other words, in the limit of z → ±0,

lim
z→±0

Ez = ± Q

2π�0R2
, (33)

which coincides with the electric field created by infinitely large sheet with charge

density per area ρ = Q
πR2 .
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If V is wrongly given by Q
2π�0R2 [

√
R2 + z2 − z] ≈ Q

2π�0R −
Qz

2π�0R2 , this leads to

lim
z→±0

Ez = −∂V

∂z
=

Q

2π�0R2
, (34)

which is wrong because this gives the electric field in the same direction on both sides

of the disc.

And finally, V calculated above is valid only on the z-axis. Therefore, it cannot be

used to calculate the electric field in x and y direction, which requires to use the

potential at the point off the axis. To calculate Ex and Ey on the z-axis from V , first

we have to calculate V for point (x, y, z) that is not on the axis and then calculate the

gradient of V .

7. From the condition given in the problem, we get




120V = Q

2π�0R2 (
√

12 + R2 − 1)

100V = Q
2π�0R2 (

√
22 + R2 − 2)

(35)

Elliminating Q,

120

100
=

√
1 + R2 − 1√
4 + R2 − 2

, (36)

and finally we get R = 4
√

210/11 = 5.27 m. Putting this into the previous equation,

we get

Q = 120 V × 2π�0R
2/((
√

R2 + 1− 1)) (37)

= 120 J/C× 2× 3.14× 8.85× 10−12 C2J−1 × 5.272

√
5.272 + 1− 1

(38)

= 4.25× 10−8 C. (39)

8. In the same way as Problem 3 of PS2, using Gauss’s law and the symmetry of the

system, we get
�

E · dS = 4πr2Er =
Qenclosed

�0
. (40)

For r < R, this gives us

Er =
Qenclosed

4π�0r2
=

Q r3

R3

4π�0r2
=

Qr

4π�0R3
(41)
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For r ≥ R, we have

Er =
Q

4π�0r2
. (42)

In both cases, Eθ = Eφ = 0. To calculate the potential at some point, we have to

integrate the work needed to convey test charge from infinite to that point. That is,

the potential is given by

V (r) =

� r

∞
−E · dr (43)

Therefore, for r ≥ R, we have

V (r) =

� r

∞
− 1

4π�0

Q

r2
dr =

Q

4π�0r
. (44)

For r < R,

V (r) =

� R

∞
− 1

4π�0

Q

r2
dr +

� r

R

1

4π�0

Q

R3
rdr (45)

=
Q

4π�0
[
1

R
+

1

R3

R2 − r2

2
]. (46)

9. First we have to calculate the work needed to add a shell of thickness dr on a sphere

of radius r. Using the result of the previous problem for r ≥ R and replacing Q with

Q r3

R3 and R with r, we get

dW = (charge of the shell)× (potential at r) (47)

= (
Q

4
3πR3

4πr2dr)(
Q(r/R)3

4π�0

1

r
) (48)

=
3Q2

4π�0R6
r4dr. (49)

Integrating this with respect to r from 0 to R, we get

W =

� R

0

3Q2

4π�0R6
r4dr (50)

=
3Q2

4π�0R6

R5

5
(51)

=
3Q2

20π�0R
. (52)
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Meanwhile, the volume integral of electric field energy is given by

�
dV

�0

2
E2 =

�0

2

� R

0

(
Q

4π�0
)2(

r

R3
)24πr2dr +

�0

2

� ∞

R

(
Q

4π�0
)2 1

r4
4πr2dr (53)

=
Q2

8π�0
[

� R

0

r4

R6
dr +

� ∞

R

1

r2
dr] (54)

=
Q2

8π�0
[

1

5R
+

1

R
] (55)

=
3Q2

20π�0
, (56)

which is the same as the previous result.

10. Applying Gauss’s law, and using the symmetry of the system, we have (PS2, Problem

4)

E(r) =






0 (r < a)

λ
2π�0rer (a ≤ r ≤ b)

0 (r > b)

(57)

The potential can be calculated from this by the relation V (r) =
� r

∞−E · dr.

For r > b, V (r > b) = 0.

For a ≤ r ≤ b,

V (r) =

� r

∞
−E · dr (58)

=

� r

b

− λ

2π�0r
dr (59)

= − λ

2π�0
log(

r

b
) (60)

=
λ

2π�0
log(

b

r
), (61)

and finally for r < a,

V (r < a) =
λ

2π�0
log(

b

a
). (62)
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11. The potential difference is given by

V1 − V2 =
Q1

4π�0r1
− Q2

4π�0r2
(63)

=
30× 10−9 C

4× 3.14× 8.85× 10−12 C2J−1 × 0.10 m

− −20× 10−9 C

4× 3.14× 8.85× 10−12 C2J−1 × 0.20 m
(64)

= 2.70× 103 − (−0.90× 103) [V] (65)

= 3.60× 103 [V] (66)

Next, suppose charge q moves from the sphere 1 to the other when they are connected

by a conducting wire. In the end, the potential difference between the two sphere

should be 0. This gives us the following condition:

Q1 − q

4π�0R1
=

Q2 + q

4π�0R2
(67)

⇔ R2(Q1 − q) = R1(Q2 + q) (68)

By solving for q, we get

q =
R2Q1 −R1Q2

R1 + R2
(69)

=
0.20 m× 30 nC− 0.10 m× (−20 nC)

0.10 m + 0.20 m
(70)

= 26.7 nC (71)

The resulting potential is given by

V final
1 = V final

2 =
1

4π�0R1
(Q1 − q) (72)

=
1

4π�0

Q1 + Q2

R1 + R2
(73)

=
10 nC

4× 3.14× 8.85× 10−12 C2J−1 × 0.30 m
(74)

= 3.00× 102 V (75)

And the charges in the spheres are

Qfinal
1 = Q1 − q = 3.3 nC, (76)
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and

Qfinal
2 = Q2 + q = 6.7 nC, (77)

respectively.

12. Suppose charge +Q and charge -Q are charged on the inner cylinder and on the outer

cylinder respectively. Assuming the cylinder is infinitely long, we can use the result of

problem 10 by replacing λ with Q/L. Therefore, the potential difference V between

the two cylinder is given by

V =
Q/L

2π�0
log(b/a). (78)

From the relation Q = CV ,

C = Q/V = 2π�0L
1

log b
a

(79)

(80)

When b− a = d� a,

C = 2π�0L
1

log b−a+a
a

(81)

= 2π�0L
1

log(1 + d
a)

(82)

≈ �0
2πaL

d
, (83)

which coincides with the capacitance of a parallel plate capacitor with area 2πaL.


