
Solutions to PS 2 Physics 201
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To find the field for x0 →∞, we first want to rewrite this result in terms of the small

parameter L
x0

. Doing so yields
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Next, we perform a Taylor expansion in terms of L
x0

about the point L
x0

= 0. For the

logarithm term, we find
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and for the second term
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Putting this all together, we arrive at a final approximation for E given by
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as desired. Comparing this to the expression for a dipole field aligned with the axis of

a dipole, we find
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2.

τ = p× E (16)

= −pE sin θk (17)

= k(10−29)(0.5) sin
π

6
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To find the work done, we use
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Finally, for the frequency of small oscillations, we use Newton’s second law
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−pE sin θ = I θ̈ (26)
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expanding sin θ for small θ, we find
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Plugging in the numbers, we have
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3. By spherical symmetry, we know automatically that the electric field everywhere will

be purely in the radial direction. Using this fact, we can apply Gauss’ law by finding

the flux through a sphere of radius r centered about the origin,
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For r < a, we have that
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and therefore
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For a ≤ r < b, we have that Qenclosed = −Q, and so

E(a ≤ r < b) = −er
keQ

r2
(41)

For b ≤ r < c, the field must be zero since this describes the interior of a conductor,

meaning that a charge of +Q must reside on the interior surface of the conducting

shell. Therefore

E(b ≤ r < c) = 0 (42)

Finally, for r ≥ c, it must be that Qenclosed = +Q, and therefore
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keQ
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Below is a sketch showing where the charges reside, and some field lines.

-Q

+Q

+Q

4. Exploiting the cylindrical symmetry of the problem tells us that the field directed

radially (i.e. in the er direction) away from the axis of the cylinders, and that

2πrLEr =
Qenclosed

�0
(44)



5

where L is the length of our cylindrical Gaussian surface.

Thus, since the cylinders are hollow, we know that there is no charge enclosed for

r < a, and thus

E(r < a) = 0 (45)

For a ≤ r < b, we have that
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and therefore
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Lastly, for r ≥ b, we have that Qenclosed = 0, so

E(r ≥ b) = 0 (48)

To find the surface charge density σ on the inner cylinder, we note that we can express

the total charge on a length L of the cylinder as either

Q = 2πaLσ (49)

or as

Q = λL (50)

Equating these two expressions, we find that
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We can substitute this result into our expression for the field between the cylinder to

find
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For b− a� a, we have that between the cylinders r − a� a, and thus
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This is equal in magnitude to the field of a parallel plate capacitor of the same charge

density. Furthermore, on a very small scale er does not vary significantly with the

polar angle, and thus may be approximated as a cartesian unit vector. Thus, this

setup locally approximates a parallel plate capacitor

5. By Gauss’ law,

Φe =
1C

�0
(57)

Thus, by the symmetry of the cube, we must have that the flux through one of the

faces is given by
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6. For r < R we have that
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Evaluating this same expression at r = R gives that the total charge Q is

Q =
4πA

5
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and thus for r < R

Qenclosed = Q
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Thus, Gauss’ law tells us that
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keQr3
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For r > R, we have that Qenclosed = Q, and therefore

E(r ≥ R) = er
keQ
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7. By the Pythagorean theorem, the radius of each disc as a function of z is given by

r(z) =
√

R2 − z2 (66)

and thus the area A of each disc is
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The volume of the sphere is then given by integrating over all discs contained in the

sphere, i.e. from z = −R to z = R. This yields
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as desired

8. Knowing that Gauss’ law follows from Coulomb’s law, we can define an analogue of

Gauss’s law for the gravitational field G. Examining the form of both Newton’s and

Coulomb’s law, we have

G = −GM

r2
er (71)

and

E =
q

4π�0r2
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where the fields E and G are the forces on a unit charge (unit mass) due to charge q

(mass M). By comparison, we see that M plays the same roll as q, and likewise −G

plays the same roll as 1
4π�0

. From this we arrive at Gauss’s law for gravitation,

�
G · dA = −4πGMenclosed (73)

9. Using Gauss’ law, we have that for r = .5m, Qenclosed = 1µC, and thus

E = r̂
ke(1µC)
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C
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Next, for r = 2m, Qenclosed = −1µC, and thus
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C
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10. We can examine this situation as a solid sphere of uniform charge density ρ and radius

R superimposed with a solid sphere of uniform charge density −ρ with radius R
2 . Let

r1 denote the vector from the center of the larger sphere to a point within the smaller

sphere, and let r2 denote the vector from the center of the smaller sphere to that same

point.

First, we use Gauss’ law to find the field E+ due to the larger sphere. At a distance

r1, we have that the charge enclosed is given by
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4

3
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and thus the field E+ is given by
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Similarly, for the field E− due to the smaller, negatively charged sphere, we find
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Summing together these two contributions to find the total field in the cavity, we get

E = E+ + E− =
ρ

3�0
(r1 − r2) (79)

But from the figure, we can see that

r1 − r2 =
R

2
x̂ (80)

Thus,

E =
ρR

6�0
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which describes a uniform field in the x̂ direction


