
Physics 200
Problem Set 7
Solution

Quick overview:
Although relativity can be a little bewildering, this problem set uses just a few ideas
over and over again, namely

1. Coordinates (x, t) in one frame are related to coordinates (x′, t′) in another
frame by the Lorentz transformation formulas.

2. Similarly, space and time intervals (∆x, ∆t) in one frame are related to inter-
vals (∆x′,∆t′) in another frame by the same Lorentz transformation formu-
las. Note that time dilation and length contraction are just special cases: it
is time-dilation if ∆x = 0 and length contraction if ∆t = 0.

3. The spacetime interval (∆s)2 = (c∆t)2 − (∆x)2 between two events is the
same in every frame.

4. Energy and momentum are always conserved, and we can make efficient use
of this fact by writing them together in an energy-momentum vector P =
(E/c,p) with the property P 2 = m2c2. In particular, if the mass is zero then
P 2 = 0.

1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and
assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0
on the earth and at 2 minutes on the sun respectively. Find the time difference between the events
according to an observer moving at u = 0.8c from Earth to Sun. Repeat if observer is moving in
the opposite direction at u = 0.8c.

Answer: According to the formula for a Lorentz transformation,

∆tobserver = γ
(
∆tEarth-Sun − u

c2
∆xEarth-Sun

)
, γ =

1√
1− (u/c)2

.

Plugging in the numbers gives (notice that the c implicit in “light-minute” cancels the extra factor
of c, which is why it’s nice to measure distances in terms of the speed of light)

∆tobserver =
2 min− 0.8(8.3 min)√

1− 0.82
= −7.7 min,

which means that according to the observer, event B happened before event A! If we reverse the
sign of u then

∆tobserver 2 =
2 min + 0.8(8.3 min)√

1− 0.82
= 14 min.

2. Return to the Earth-Sun case above. (a) What is the speed of a spacecraft that makes the trip from
the Sun to the Earth in 5 minutes according to the on board clocks? (b) What is the trip time in
the Earth-Sun frame? (c) Find the square of the spacetime interval between them in light-minutes.

(You may need to come back to part (c) after I do spacetime intervals in class. Do not just jump
in and use some formula. Think in terms of events, assign as many possible spacetime coordinates
as you can to each event in any frame and use the LT. Measure time in minutes, distance in
light-minutes. Imagine a rod going from earth to the sun, if that helps.
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Note that the spatial coordinate difference between events in the spacecraft frame are not the same
as the distance between Earth and Sun in that frame. Even pre-Einstein, if I sit in my car going
at 60 mph, I leave New Haven at t = 0 (Event 1) and arrive at Boston at t = 2 hrs (Event 2), the
two events have the same coordinate in my frame (i.e., where I am in the car), ∆x = 0, but that
is not the distance between these towns.)

Answer:

(a) According to an observer on the spacecraft, ∆xobserver = 0. So we can write (this is nothing
but the time dilation formula, if you look carefully)

∆xEarth-Sun = γ(0 + v∆tobserver) =⇒ ∆xEarth-Sun

∆tobserver
= vγ =

v√
1− (v/c)2

=
c√

(c/v)2 − 1
,

and solving for v gives

v = c

[
1 +

(
∆tobserver

∆xEarth-Sun/c

)2
]−1/2

= (3× 108 m/s)

[
1 +

(
5 min

8.3 min

)2
]−1/2

= 2.6× 108 m/s.

(b) In the Earth-Sun frame

∆tEarth-Sun =
∆xEarth-Sun

v
=

8.3 light-minutes
2.6× 108 m/s

= 9.6 min.

Alternatively, we can use the time-dilation formula to get (the difference is due to rounding-
errors)

∆tEarth-Sun =
∆tobserver√
1− (v/c)2

=
5 min√

1−
[
1 +

(
5 min

8.3 min

)2
]−1

= 9.7 min.

Note that we can use the “regular” time-dilation formula because, in effect, there is only one
clock on the spacecraft. Before, we had to worry about two different times at two different
locations, which is why we had to use the full Lorentz transformation.

(c) Since the spacetime interval is the same in every frame, we can choose a frame where it can
be most easily evaluated, for example in the frame where ∆x = 0. This is true on board the
spacecraft, and we already know what the time on board is, so

(∆s)2 = (c∆tobserver)2 = (c · 5 min)2 = 25 (light-minutes)2 = 9× 104 (light-seconds)2

Let’s check that our calculations are correct by doing the same in the Earth-Sun frame:

(∆s)2 = (c∆tEarth-Sun)2−(∆xEarth-sun)2 = (c·9.7 min)2−(8.3 light-minutes)2 = 25 (light-minutes)2,

which agrees with the previous answer, as expected.

3. A muon has a lifetime of 2 × 10−6 s in its rest frame. It is created 100 km above the earth and
moves towards it at a speed of 2.97× 108 m/s. At what altitude does it decay? According to the
muon, how far did it travel in its brief life?

Answer: The time dilation factor is γ = 1/
√

1− (v/c)2, and the muon’s lifetime τ in its rest frame
corresponds to γτ in the laboratory frame. This means the muon travels a distance vγτ , or

d = vγτ =
(2.97× 108 m/s)(2× 10−6 s)√

1−
(

2.97×108 m/s
3×108 m/s

)2
= 4.2 km
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before it decays, which occurs at 95.8 km above the ground. According to the muon, it has only
traveled

d

γ
= vτ = (2.97× 108 m/s)(2× 10−6 s) = 590 m.

4. An observer S who lives on the x-axis sees a flash of red light at x = 1210 m, then after 4.96 µs,
a flash of blue at x = 480 m. Use subscripts R and B to label the coordinates of the events.

(i) What is the velocity relative to S of an observer S′ who records the events as occurring at
the same place?

(ii) Which event occurs first according to S′ and what is the measured time interval between
these flashes? For the former you do not need to do a calculation. For the latter I suggest
using the spacetime interval.

Answer:

(i) Physically, what happens is that the observer sees the flash of red, then travels at velocity v
such that he arrives just in time to see the flash of blue. So without thinking too hard we can
say

xR − vtR = xB − vtB ,

or
v =

xR − xB

tR − tB
=

1210 m− 480 m
0− 4.96× 10−6 s

= −1.47× 108 m/s.

(ii) We have found in part (i) an observer who can travel from one event to the other at v < c,
and since the spacecraft is as good a signal as any, from what we learned in class the order
of the events must be the same in every frame. Therefore the observer in S′ sees event R
happen before event B. To find the time interval in S′, we can use the invariant spacetime
interval and use the fact that the events occur at the same place in S′:

(c∆t′)2 − (∆x′)2 = (c∆t′)2 = (c∆t)2 − (∆x)2.

Therefore

∆t′ =

√
(∆t)2 −

(
∆x

c

)2

=

√
(4.96× 10−6 s)2 −

(
1210 m− 480 m

3× 108 m/s

)2

= 4.32 µs.

In case you are suspicious, we can do this explicitly, using the value of v found above:

t′R = γ
(
tR − v

c2
xR

)
=

1√
1−

(
1.47×108 m/s
3×108 m/s

)2

[
0− −1.47× 108 m/s

(3× 108 m/s)2
(1210 m)

]
= 2.27 µs,

t′B = γ
(
tR − v

c2
xR

)
=

1√
1−

(
1.47×108 m/s
3×108 m/s

)2

[
4.96× 10−6 s− −1.47× 108 m/s

(3× 108 m/s)2
(480 m)

]
= 6.59 µs.

Again, event R occurs before event B, and the time interval between these flashes is ∆t′ =
t′B − t′R = 4.32 µs.
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5. Two rockets of rest length L0 are approaching the earth from opposite directions at velocities ±c/2.
How long does one of them appear to the other?

Answer: Let’s pick one rocket (call it rocket 1) and consider how fast the other rocket (rocket 2)
looks in this frame. In the Earth frame, rocket 1 has velocity c/2 and rocket 2 has velocity −c/2.
Applying the velocity addition law gives

v′2 =
v2 − v1

1− v1v2/c2
=

(−c/2)− (c/2)
1− (c/2)(−c/2)/c2

= −4
5
c,

i.e., rocket 2 looks like it is approaching at 4
5c. Applying the Lorentz contraction formula gives

L′ =
L0

γ
= L0

√
1−

(
4
5

)2

=
3
5
L0.

6. A body quadruples its momentum when its speed doubles. What was the initial speed in units of
c, i.e., what was u/c?

Answer: With f standing for final, i for initial, and vf = 2vi, we have

pf

pi
=

γfmvf

γimvi
=

2γf

γi
= 4 =⇒ 1− (vi/c)2

1− (2vi/c)2
= 4,

after writing out the γ’s and squaring both sides. Solving for vi/c gives

vi

c
=

1√
5
.

7. A body of rest mass m0 moving at speed v collides with and sticks to an identical body at rest.
What is the mass and momentum of the final clump?

Answer: The energy-momentum vector of the moving mass is P1 = (γm0c, γm0v) where γ =
1/

√
1− (v/c)2, while for the mass at rest it is P2 = (m0c, 0). Thus the total energy-momentum

vector of the final clump is P = P1 + P2. We can read off the momentum as γm0v, and for the
mass

P 2 = M2c2 = (P1 + P2)2 = P 2
1 + 2P1 · P2 + P 2

2 = m2
0c

2 + 2γm2
0c

2 + m2
0c

2 = 2m2
0c

2(1 + γ),

so that
M = m0

√
2(1 + γ).

8. A body of rest mass m0 moving at speed v approaches an identical body at rest. Find V , the speed
of a frame in which the total momentum is zero. Do this first by the law of composition of velocities
starting with how you would do this non-relativistically. Next, repeat using the transformation law
for the components of the energy-momentum vector. (You may need to come back to the second
part after I do energy-momentum vectors in class.)

Answer (see also the solution to Problem 11): First we use velocity addition. You should convince
yourself that if two identical particles have equal and opposite velocities they have equal and
opposite momenta, in both the classical case where p = mv and in the relativistic case where
p = γmv. So we will look for a frame where the velocities are equal and opposite. In a frame
moving at velocity V with respect to the original frame, the body at rest has velocity −V , while
the mass that was already moving at v has velocity

v′ =
v − V

1− vV/c2
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with respect to the new frame. If the total momentum is zero, then

v − V

1− vV/c2
= V =⇒ ṽṼ 2 − 2Ṽ + ṽ = 0,

where we have let ṽ = v/c and Ṽ = V/c (basically, set c = 1 temporarily) in order not to make
the solution look more complicated than it is. Note that this is the relativistic generalization of
the equation v − V = V for equal masses. In any case, the quadratic equation gives

Ṽ =
1
ṽ

(
1±

√
1− ṽ2

)
.

It’s clear that the solution with a plus sign makes Ṽ larger than 1 (never true) for ṽ < 1 (always
true), so we must take the solution with a minus sign. Moreover, we can actually rewrite this in a
nice way if we let

γ =
1√

1− (v/c)2
=

1√
1− ṽ2

,

so that

Ṽ = ṽ
1− 1

γ

ṽ2
= ṽ

1− 1
γ

1− 1
γ2

= ṽ
1− 1

γ(
1− 1

γ

)(
1 + 1

γ

) = ṽ
1

1 + 1
γ

= ṽ
γ

1 + γ
,

or
V = v

γ

1 + γ
.

Next, we use the energy-momentum vector. In the original frame, the energy-momentum vector
of the moving mass is (γm0c, γm0v) where γ = 1/

√
1− (v/c)2, while for the mass at rest it is

(m0c, 0). Thus the total energy-momentum vector is P = (m0c(1 + γ), γm0v). In the frame with
zero total momentum we must have P ′ = (E/c, 0), so if we write out the transformation law for
the momentum part of this vector we have

0 =
γm0v − V

c [m0c(1 + γ)]√
1− (V/c)2

=⇒ γm0v = m0V (1 + γ).

Solving for V is a simple matter, giving

V = v
γ

1 + γ
,

which agrees with our answer above. The second method is clearly the better method, however.

At this point it is also good to check that our answer is reasonable in the non-relativistic limit,
i.e., when γ ' 1. Then V = v/2, which is what we would have obtained without relativity.

9. Show that a photon cannot break up into an electron and a positron. For our purposes the
electron and positron are identical particles with four-momenta (with c = 1) P1 = m0(γ1, γ1v1)
and P2 = m0(γ2, γ2v2) where γ = 1/

√
1− v2. The photon four-momentum is K = (ω,k) with

ω = |k|. I suggest you use energy-momentum conservation and the dot products of four vectors to
show that this process is kinematically forbidden.

Answer: The conservation of energy-momentum tells us K = P1 + P2, so if we square both sides
we get

K2 = 0 = (P1 + P2)2 = P 2
1 + 2P1 · P2 + P 2

2 = m2
0c

2 + 2
(

E1E2

c2
− p1 · p2

)
+ m2

0c
2,
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which would imply

p1 · p2 = m2
0c

2 +
E1

c

E2

c
.

But this is impossible, because the formula
(

E

c

)2

= p2 + m2c2

which holds for all particles tells us p1 < E1/c and p2 < E2/c for particles with mass. Therefore
this process is forbidden by relativity.

10. In this problem let c = 1. A particle of rest mass m0 decays at rest into a photon and loses
rest mass δ in the bargain. Show that the photon energy is ν = δ(1 − δ

2m0
) in the particle’s rest

frame before the decay. Note that the photon has zero rest mass, that is, the square of its four
momentum vanishes. The problem can be solved most efficiently if you use four vectors and dot
products between them, but I do not insist you do. Denote the four vector of the photon by
K = (ν,k) and that of the particle before and after by P = (E,p) and P ′ = (E′,p′).
Answer: With the notation given in the problem, the conservation of energy-momentum for the
decay is P = K + P ′ or P ′ = P −K. Using the fact that P = (m0,0) (the particle is initially at
rest), we square both sides to get

P ′2 = (m0 − δ)2 = (P −K)2 = P 2 − 2P ·K + K2 = m2
0 − 2P ·K = m2

0 − 2m0ν.

Expanding (m0 − δ)2 and canceling the m2
0’s gives

−2m0δ + δ2 = −2m0ν =⇒ ν = δ

(
1− δ

2m0

)
.

11. Consider a particle of rest mass m0 moving at velocity v in your frame S. Write down expressions
for the components of its energy momentum vector P = (p0, p1) in terms of m0, v. Now see this
particle from a frame S′ moving at velocity u. What will be its velocity w and what will be
the components of P ′ = (p′0, p

′
1), first in terms of w and then in terms of w written in terms of

u and v? Show that the primed coordinates are related to unprimed ones by the same Lorentz
Transformation that relates (x0, x1) to (x′0, x

′
1).

Answer:
P = (γvm0c, γvm0v), γv =

1√
1− (v/c)2

.

From the formula for the addition of velocities, in S′ the particle has velocity

w =
v − u

1− vu/c2
,

so that
P ′ = (γwm0c, γwm0w), γw =

1√
1− (w/c)2

(the meaning of the labels on γ should be obvious by now). The expression quickly gets messy if
we just try to write this in terms of u, v, so we do some algebra first:

γw =
1√

1− 1
c2

(
v−u

1−vu/c2

)2
=

c2 − vu√
(c2 − vu)2 − c2(v − u)2

=
c2 − vu√

c4 + v2u2 − c2v2 − c2u2

=
c2 − vu√

(c2 − u2)(c2 − v2)
=

1− vu/c2

√
1− (u/c)2

√
1− (v/c)2

= γuγv

(
1− vu

c2

)
.
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Then

p′0 = γwm0c = γu

(
γvm0c− u

c2
γvm0v

)
= γu

(
p0 − u

c2
p1

)
,

p′1 = γwm0w = γuγvm0

(
1− vu

c2

) v − u

1− vu/c2
= γu

(
γvm0v − u

c
γvm0c

)
= γu

(
p1 − u

c
p0

)
,

which is precisely how (x0, x1) transforms into (x′0, x
′
1).

12. (OPTIONAL) Consider two rockets A and B of rest length L0 = 1 m travelling towards each other
with a tiny shift in the y-direction so they do not collide, as in part Fig. 1. Each sees the other
approach it with speed u. According to A, when the tail of B passed the tip of A, a missile was
fired from the tail of A towards B as in part (a) of the figure. It will clearly miss due to length
contraction of B as seen by A. But B will see the event as in part (b) of the figure and expect a
hit. Who is right? (Ignore the time it takes the missile to hit its target.)

It will be most educational to assign spacetime coordinates to five events in each frame: tip of A
passes tip of B (set it to (0, 0) for both), tail of B passes tip of A, missile is fired, tip of B passes
tail of A and finally tails pass. It will be useful to know that if an event occurs at either end of
either rockets its spatial coordinates are no-brainers in that rocket frame since the tips are always
at x = 0, x′ = 0 and the tails are at x = −1 and x′ = +1. It should also be easy to find time
elapsed between tip of your rocket passing my tip and my tail since I am of unit length and you
are moving at speed u. Ditto for tail. As a check of your coordinates you may want to see that
the spacetime interval between any event and (0, 0) comes out same for both.

A

A

B

B

(a)

(b)

Figure 1: The point of view of A is in (a). We think B
will see it as in (b). But something is wrong since there
was no hit according to A. The three funny lines coming
out of the tip of A are supposed to be the missile aimed
at B.

Answer: Let γ = 1/
√

1− (u/c)2. It’s easy to see that the sequence of events is simpler in frame
A, so keeping in mind that according to A the other rocket has length L0/γ and velocity −u we
begin by writing down the coordinates of the following events:

Tip of B passes tip of A: (x, t) = (0, 0)
Tail of B passes tip of A: (0, L0/uγ)

(M) Missile is fired from tail of A: (−L0, L0/uγ)
(T) Tip of B passes tail of A: (−L0, L0/u)

Tail of B passes tail of A: (−L0, L0/u + L0/uγ).

7



Note that because γ is greater than 1, the missile is fired (M) before the tip of B reaches the tail
of A (T), and the missile misses rocket B according to A. Knowing that relativity is a consistent
theory of physics, we expect B to conclude the same, but it’s not immediately obvious that this
is the case. So let’s use the Lorentz transformation formulas (recall that B moves at velocity −u
relative to A)

xB = γ(xA + utA),

tB = γ
(
tA +

u

c2
xA

)

to see what transpires according to B:

Tip of A passes tip of B: (0, 0)
Tip of A passes tail of B: (L0, L0/u)

(M) Missile is fired from tail of A: (L0 − γL0, L0/u− γuL0/c2)
(T) Tail of A passes tip of B: (0, L0/uγ)

Tail of A passes tail of B: (L0, L0/u + L0/uγ).

These are the same events as above described from the point of view of B. We can now compare
the times when B sees the missile being fired (M) and the tail of A passing the tip of B (T):

tT =
L0

uγ
, tM =

L0

uγ

(
γ − γ2u2

c2

)
.

It turns out that the quantity in parentheses is always less than 1 if u is not zero and is less than
the speed of light, which we can see by letting z = u/c and writing it as

1√
1− z2

− z2

1− z2
=
√

1− z2 − z2

1− z2
.

The square root in the numerator is always less than 1, so the numerator is always less than the
denominator, i.e., the quantity in parentheses is always less than 1. So we’ve shown that tM is
always less than tT , which in turn shows that according to B, the missile fires (M) before the tail
of A passes the tip of B (T). Therefore the missile also misses according to B. The point is that
in B’s frame the tip of A passing the tail of B is not simultaneous with the firing of the missile,
and in fact occurs after the missile is fired. Strange, but true.

Since both observers agree that the missile misses the rocket, in fact both are right: they agree
that the missile misses.
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