Problem Set XII- Assign December 6, 2006 Due December 8, 2006.
Fall 2006 Physics 200a
R. Shankar
(Turn the problem set into Mara Baraban's box in the SPL mail room by 5 pm on $12 / 8$.)

1. What is the increase in entropy if one gram of ice at $O^{\circ} C$ is melted and heated to $50^{\circ} \mathrm{C}$ ?
2. Find the change in entropy if 500 g of water at $80^{\circ} \mathrm{C}$ is added to 300 g of water at $20^{\circ} \mathrm{C}$. (None of the heat is lost from the system.)
3. Consider a mole of a gas initially at $1 \equiv\left(P_{1}, V_{1}\right)$ and finally at $2 \equiv\left(P_{2}, V_{2}\right)$. Since $S_{2}-S_{1}$ is path independent, choose the simple path shown in Figure (1) by first changing pressure at constant volume and then volume at constant pressure. Let $0=\left(P_{0}, T_{0}\right)$ be the intermediate point you go through. Show that

$$
S_{2}-S_{1}=C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{P_{2}}{P_{1}}\right) .
$$

Show that if 1 and 2 lie on an adiabatic curve, this difference vanishes. Assume $C_{p}=C_{V}+R$, but not a particular value to $C_{V}$.


FIG. 1: To compute entropy difference $S_{2}-S_{1}$ go from 1 to 0 at constant volume and then from 0 to 2 at constant pressure.

## Open Yale courses

