
1

Relativity notes Shankar

Let us go over how the Lorentz transformation was derived and
what it represents.

An event is something that happens at a definite time and place,
like a firecracker going off. Let us say I assign to it coordinates (x, t)
and you, moving to the right at velocity u, assign coordinates (x�, t�).
It is assumed that when you, sitting at x

� = 0 passed me (sitting at
x = 0), we set our clocks to zero: t = t� = 0. Thus our origins in
space-time coincide.

Let us see how the coordinates would have been related in pre-

Einstein days.
First, once we synchronize clocks at t = t

� = 0, they remain
synchronized for all future times t = t

�. This is the notion of absolute
time we all believe in our daily life.

You will assign to the event the spatial coordinates

x
� = x− ut. (1)

This relationship is easy to understand: your origin is ut meters to
the right of mine (Figure (2)) because you have been moving to the
right at velocity u for time t so the x-coordinate you assign to an
event will be less by ut compared to what I assign. You can invert

x

x'

S S'

ut

Figure 1: The same event (solid dot) is assigned coordinates (x, t) by me (S) and (x�
, t

�) by
you (S’). In the pre-Einstein days t = t� not only initially (when our origins crossed) but
always.
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this relation to say
x = x

� + ut. (2)

How are these two equations modified post-Einstein? If the ve-
locity of light is to be same for both you and me, it is clear we do
not agree on lengths or times or both. Thus if I predict you will say
the event is at x� = x− ut, you will say that my lengths need to be
modified by a factor γ so that the correct answer is

x
� = γ(x− ut). (3)

Likewise when you predict I will say x = x� + ut
� I will say, ”No,

your lengths are off, so the correct result is

x = γ(x� + ut
�).” (4)

Note two things. First, I leave open the option that the time
elapsed between when we synchronized clocks and when the fire-
cracker went off is t� for you and t for me, with two times being pos-
sibly different. Next, the ”fudge factor” for converting your lengths
to mine and mine to yours are the same γ. This comes from the
postulate that both observers are equivalent.

So let us look at the equations we have:

x = γ(x� + ut
�) (5)

x
� = γ(x− ut). (6)

We proceed to nail down γ as follows. The event in question was
a fire cracker going off. Suppose when our origins coincided we sent
off a light pulse that this pulse set off the firecracker. Since the light
pulse took t seconds to travel x meters according to me and took t

�

seconds to go x� meters according to you and we both agree on the
value of c, it must be true for this particular event that

x = ct and x
� = ct

�
. (7)
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Let us multiply the LHS of Eqn 5 by the LHS of 6 and equate the
result to the product of the RHS’s to get

xx
� = γ

2(xx
� + xut

� − x
�
ut− u

2
tt
�), and upon setting x = ct, x� = ct� we get(8)

c
2
tt
� = γ

2(c2
tt
� + uctt

� − uct
�
t− u

2
tt
�) and now upon cancelling tt� (9)

γ
2 =

1

1− u2

c2

(10)

γ =
1

�

1− u2

c2

. (11)

Note that once we have found γ it does not matter that we got
it form this specific event involving a light pulse. It can applied to
Eqns. (5,6) valid for a generic event. Putting γ back into Eqn. (6)
we obtain

x
� =

x− ut
�

1− u2

c2

. (12)

If we now go to Eqn 5 and isolate t� we find

t
� =

t− ux

c2�

1− u2

c2

(13)

upon remembering that

1− 1

γ2
=

u
2

c2
. (14)

To summarize, if I am frame S and you are S’, and you are moving
to the right (increasing x direction) at speed u and my coordinates for
an event are (x, t) and yours are (x�, t�) the Lorentz transformation
tells us that

x
� =

x− ut
�
1− u2/c2

(15)

t
� =

t− u

c2x�
1− u2/c2

(16)
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If we consider two events labelled 1 and 2, then the coordinate
differences obey

∆x
� =

∆x− u∆t
�
1− u2/c2

(17)

∆t
� =

∆t− u

c2∆x
�
1− u2/c2

(18)

where ∆x = x2 − x1 etc., and differences are not necessarily small.
If you want to get my coordinates in terms of yours, you need to

invert Eqns. (15) and 16. The answer is we get the same equations
but with u → −u. The same goes for the differences. As a result
the differences will be related as follows;

∆x =
∆x

� + u∆t
�

�
1− u2/c2

(19)

∆t =
∆t� + u

c2∆x�
�
1− u2/c2

(20)

Now for the velocity transformation law .
Let us follow a particle as it moves by an amount ∆x in time ∆t

according to me and ∆x
� in time ∆t

� according to you. Let us agree
that velocities are defined as follows once and for all:

v =
∆x

∆t
according to me (21)

w =
∆x

�

∆t�
according to you (22)

u = your velocity relative to me (23)

In the above all ∆�
s better be infinitesimals going to zero, as we are

talking about instantaneous velocities and the derivative needs to be
taken.
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Suppose I see a particle with velocity v. What is the velocity w

according to you? To get this we take the ratio of the equations (37
-38) that give the primed coordinate differences in terms of unprimed
ones:

w =
∆x

�

∆t�
=

∆x− u∆t

∆t− u

c2∆x
=

v − u

1− uv

c2
(24)

where in the last step we have divided top an bottom by ∆t. It is
good to check that for small velocities (dropping the terms that go
as 1/c2) we get results agreeing with common sense.

Let us get used to going from your description to mine. Suppose
you think a particle has velocity w. What will I think its velocity is?
Now we use Eqns.(19-20). Taking the ratios as before and recalling
the definition of w we get

v =
w + u

1 + vw

c2
, (25)

which just has the sign of u reversed in Eqn. (24) as expected and
w ↔ v.

Suppose you see an object moving at w = 3c/4 and you yourself
are moving relative to me at u = 3c/4. In the old days I would
expect that object to be moving at 1.5c. However the correct answer
is

v =
3c
4 + 3c

4

1 + 9
16

=
24

25
c. (26)

It is interesting to see that if you choose to apply this to a light pulse
seen by you (w = c) the speed I will find (for any relative velocity u

between us)

v =
c + u

1 + u/c
= c. (27)
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Time dilatation. Let me carry a clock with ticks ∆t = τ0

seconds apart. If the two events are two successive ticks, the spatial
separation is ∆x = 0 since the clock is at rest for me. You think the
time difference between ticks is

∆t
� =

τ0 − 0u
2

c2�
1− u2/c2

=
τ0

�
1− u2/c2

(28)

Thus you say my clock is slow. This is what I will hear from anyone
moving relative to me.

Let us rederive this using Eqns (19-20). Thus set

∆t = τ0 =
∆t

� + u

c2∆x
�

�
1− u2/c2

(29)

and note that the other equation says

∆x = 0 =
∆x

� + ut
�

�
1− u2/c2

(30)

which means ∆x
� = −u∆t

�. (This just means you think I and my
clock are moving to the left at speed u) Feeding this into Eqn.29 to
get

τ0 =
∆t�(1− u2/c2)

�
1− u2/c2

(31)

which agrees with Eqn. 28.
Length contraction Suppose you are carrying a rod of length

L0. This is its rest length. Suppose you are moving relative to me
at velocity u. How long will I say it is? To find its length I have
two of my co-moving assistants measure the location of its front and
back ends at the same time. These two measurements, which can
be seen as two events, have ∆x = L, the length according to me,
and ∆t = 0 since the measurements of a moving rod’s ends have to
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be simultaneous. (What happens if I measure one end, take a break
and them measure the other?)

The separation in space between the two events is the rest length
L0 of the rod according to you. Thus

L0 =
L− 0

�
1− u2/c2

or L = L0

�

1− u2/c2. (32)

that is I will say your meter stick is actually
�
1− u2/c2 meters long,

i.e., shortened.
Likewise you will see my meter sticks are contracted. Suppose

the contraction factor
�
1− u2/c2 = .5. I say your meter sticks are

.5m long. You say yours are fine and mine are .5m long. How do
you understand a guy with a shortened meter stick accusing you of
having a shortened meter stick? Should I not say your are 2m long?
The answer is this : You will say that I measured the leading end of
your meter stick first and then after a delay , during which time the
stick slid by, I measured the other end. That is, you will say I did
not measure the ends simultaneously. I will insist I did, and both are
right since simultaneity is not absolute.

Order of events and causality If event 1 causes event 2, no
one should see the cause come after the effect for this leaves time
for some one to prevent the cause from itself occurring. On the
other hand if the two events are not causally related, a reversed
order, while strange from our daily experience, will not lead to logical
contradictions.

According to the LT

∆t
� =

∆t− u

c2∆x
�
1− u2/c2

(33)

Let ∆t = t2 − t1 > 0, so that I think 2 occurred after 1. Then we
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can find an observer for whom ∆t
�
< 0 provided

u

c2
∆x > ∆t (34)

u

c
>

c∆t

∆x
(35)

If c∆t > ∆x the order can be reversed only if u/c > 1 which is
impossible. In other words if a light signal can go a distance greater
than the spatial separation between events, their order cannot be
reversed in this theory. This is because if a light signal has enough
time to interpolate between the events, event 1 could have been
the cause of event 2 and we do not want the time- order of such
(potentially) causally related pairs reversed. On the other hand if
c∆t < ∆x, even a light pulse could not have made it from one event
to the other and the allows us to find frames with u/c < 1 in which
the order is reversed. This is harmless since if a light signal cannot
connect the events, neither can any other means, and the events could
not have been causally connected.

In summary:
If there is time for a light signal to go from the first event to the

second, the theory assumes they could have been causally connected
and does not allow us to find a frame with the order reversed, while
if there is not enough time for a light signal to go from the first event
to the second, the theory assumes they could not have been causally
connected and allows us to find frames with the order reversed.

Thus if I am at (0, 0), space-time is divided into three regions:
absolute future (which has ct > |x| which I can affect from the origin
using light or something slower)) absolute past (ct < |x|, which could
have affected me here and now using light or something slower ) and
the ”elsewhere” region where events I say happen later (earlier) could
have happened earlier (later) for another observer moving at a speed
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x

ct x=ct
x= -ct

Absolute future

Absolute Past

The light cone is defined by x=   ct+-

-

Figure 2: The nature of space-time around the point (0, 0): events in the forward and
backward light-cones lie in the absolute future and past (with the time-order of events
relative to (0, 0) not negotiable), while those outside have non-absolute time-ordering relative
to (0, 0): for example those that occur just above the x − axis occur later than the event
(0, 0) according to me but could be earlier than that event according to another observer.

u < c. See Figure 2.
Four vectors Let us define a four-vector

X = (x0, x1, x2, x3) ≡ (ct, x, y, z) ≡ (x0, r) (36)

where all four components now have units of length. I urge you
to check that under a LT describing motion along the x-axis, the
components of X transform as follows:

x
�
1 =

x1 − βx0√
1− β2

(37)

x
�
0 =

x0 − βx1√
1− β2

, (38)

x
�
2 = x2 (39)

x
�
3 = x3 (40)

where β = u

c
.

If you rewrote this as

x
�
1 = x1

1√
1− β2

− x0
β√

1− β2
(41)
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x
�
0 = x0

1√
1− β2

− x1
β√

1− β2
(42)

you can see how similar this is to the equations relating (x, y) to
(x�, y�) under rotation of axes:

x
� = x cos θ + y sin θ (43)

y
� = y cos θ − x sin θ (44)

No one is surprised that two people cannot agree on what the x-
component of a point is or whether or not two points lie on the
x-axis (since my x-axis is not yours) but it is surprising to see that
this applies to (x0, x1) ≡ (ct, x). Before Einstein we still needed t

to label an event (besides (x, y, z), but no transformation of frame
(including going to a moving frame) could change the time coordinate
t. The reason time is now the fourth dimension is that it mixes freely
with the other three under LT’s.

Now, we saw that in the case of rotated axes, two observers who
could not agree on the coordinates of a point, still agreed on one how
far the point was from the origin:

x
2 + y

2 = x
�2 + y

�2 (45)

More generally they agreed on the dot product of two vectors

A · B = AxBx + AyBy = AB cos θ = A
�
xB

�
x + A

�
yB

�
y (46)

with A being the position vector r = ix + jy in the above example.
In the LT, we cannot hope that

1√
1− β2

= cos θ
β√

1− β2
= sin θ (47)

since this does not respect cos2
θ + sin2

θ = 1. Thus the LT is not a
rotation in the (ct, x) plane. However I strongly urge you to check
that the there is a dot product X · X that does the trick:
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X · X = x
2
0 − x

2
1 = x

�2
0 − x

�2
1 (48)

We call this the space-time interval s
2 between the origin and the

point (x0, x1). More generally if there are two events separated in
space by ∆x1 and time by ∆x0, then the square of the space-time
interval between the events is

(∆s)2 = (∆x0)
2 − (∆x1)

2 (49)

and is the same for all observers. Note that s2 and (∆s)2 are not
positive definite. We use the following terminology:

• space-like separation or space-like interval → (∆s)2 < 0, that is
∆x1 > ∆x0

• time-like separation → (∆s)2 > 0, that is ∆x0 > ∆x1

• light-like separation → (∆s)2 = 0, that is ∆x0 = ∆x1, events
could lie on path of a light pulse.

In Figure 2, the points in the absolute past and future are separated
from the origin by time-like separations, points in the other two re-
gions are space-like separated and points on the light cone have a
light-like separation.

Four momentum In the old days we manufactured new vectors
from the one by taking derivatives:

dr

dt
= v (50)

is a vector since dr is a vector and dividing a scalar (something that
does not transform when you rotate axes) like dt does not change this
fact. We then made up a new vector called momentum by multiplying
v by another scalar called m:

p = mv. (51)
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Let us try that here by analogy. Clearly ∆X = (∆x0, ∆x1, ∆x2, ∆x3) ≡
(c∆t, ∆r) is the change in the coordinates of a point in space-time.
We cannot divide these four by ∆t since t is just another compo-
nent. This will be like dividing ∆x by ∆y and that does not give us
a velocity. The only scalar, something same for al observers, (or an
invariant) is the space-time interval:

ds =
�

(dx0)2 − (dx1)2 = cdt

������1−



dx

cdt




2

= cdt

�

1− v2/c2 (52)

where v is the velocity of the particle as seen by the observer who has
assigned the coordinates of X to that particle. It is better to drop
the c which does not change the scalar nature, and use a quantity
with dimensions of time

dτ = dt

�

1− v2/c2 (53)

where dτ is called the proper-time between the two events. What is
this quantity with units of time and yet same for all? It is the time
measured by a clock moving with the particle. To see this let us go
back to the definition

dτ =
�

dt2 − dx2/c2. (54)

This is the same in all frames. What is it in the frame moving with
the particle? In this frame the two events on its trajectory occur at
the same point – dx = 0, and dτ reduces to the time interval in the
on-board or co-moving clock.

Let us now define a four-momentum as follows:

P = m




dx0

dτ
,
dx1

dτ
,
dx2

dτ
,
dx3

dτ



 (55)

≡


c
dt

dτ
,
dr

dτ



 (56)
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≡ (P0, P1, P2, P3) (57)

≡ (P0,P) (58)

where m is called the mass of the particle (postulated to be the same
in al frames) and I have written the expression for the components
of P in many possible notations found in the literature.

Note that we have cleverly dealt with the question of taking the
time-derivative: instead of taking my time-derivative or yours, we
take it in the particle’s frame. You and I do not agree on how many
seconds it took the particle to go the distance ∆x separating two
nearby events in the particle’s trajectory, but we all agree if we ask
how long the particle says it took according to its own clock.

For now on let us ignore the components in the y and z directions,
assuming all motion along x. (I will still call P the four-momentum.)

Given that P is a four-vector means the following: if in one frame
it has components (P0, P1) then in another moving at speed u, it will
have components P

�
0, P

�
1 which are related to each other just like the

components of X were as in Eqns. (37,38).
We will exploit this in a moment but let us look at all the τ

derivatives, in Eqn 55, which are unfamiliar quantities. The particle
can have its own clock, but I want to see it all in terms of my clock
and my time t. So let us trade τ derivatives of any function f for
t=derivatives as follows:

dτ = dt

�

1− v2/c2 (59)
df

dτ
=

df

dt
· dt

dτ
=

df

dt
· 1

�
1− v2/c2

. (60)

We can now write the four-momentum in Eq. 56 as

P = (P0, P1) =




mc

�
1− v2/c2

,
mv

�
1− v2/c2



 (61)
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where we now have familiar velocity v everywhere. So take your
pick: a familiar looking expression for four-momentum in terms of
an unfamiliar quantity, the proper time τ as Eqn. (57), or the above
expressions with new functions of a familiar velocity. The second
version allows us to understand what the components of P mean.
Consider first

P1 =
mv

�
1− v2/c2

(62)

If we consider a particle moving slowly, i.e., v/c << 1, we find (upon
setting the denominator to unity)

P1 = mv (63)

Thus we conclude that P1 stands for the momentum of the particle
in the relativistic theory. However if the particle picks up speed we
need to take into account the denominator. As v → c, P1 grows
without limit: that is, in this theory, there is a limit to the particle
velocity, but not its momentum.

Some people like to write

P1 =




m

�
1− v2/c2



 v ≡ m(v)v (64)

where m(v) = m/

�
1− v2/c2 is a new velocity dependent mass.

They also refer to m(0) = m as the rest mass m0. Their point is
that if you introduce a velocity dependent mass, then momentum
can still be mass times velocity as in the old days. We will will not
do that: for us m is always the rest mass and momentum is now a
more complicated function of this mass and velocity.

Suppose v/c is small but not utterly negligible. Then we can use
a slightly better formula for momentum by using

(1 + x)n = 1 + nx + . . .
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for x << 1, to write

1
�
1− v2/c2

= (1− v
2
/c

2)−1/2 = 1 + v
2
/2c2 + .. (65)

and
P1 = mv + mv

3
/2c2 + .. (66)

where the ellipses (dots) stand for smaller corrections we are ignoring.
We can calculate more such correction terms or simply use the exact
expression with the

�
1− v2/c2 in it.

It is also clear that if we bring in P2 and P3 we just get the vector

P =
mv

�
1− v2/c2

(67)

What does
P0 =

mc
�
1− v2/c2

stand for? If we set v = 0 we get the mass of the particle. Let us go
to the next level of approximation and write as before,

P0 = mc +
1

2c
mv

2 + . . . (68)

We see that if we multiply both sides by c something familiar emerges:

cP0 = mc
2 +

1

2
mv

2 + . . . (69)

We see that the second term is just the kinetic energy. So it
must be that all higher powers v/c shown by the ellipsis stand for
corrections to kinetic energy as we consider faster particles.

But it must then be that the first term mc2 also stands for energy,
but of a particle at rest. This is called rest energy. Einstein did not
tell us how to extract this energy (in contrast to kinetic energy of
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motion which can be extracted, say in hydroelectric power genera-
tors using turbines that slow down the water). However when later
on when people discovered fusion or fission, they found that some
amount of mass was missing at the end of the reaction and that this
missing mass (upon multiplying by c

2) exactly equalled the addi-
tional kinetic energy of the final particles. You should read up on
this if you want. I will limit myself to the discussion of four-vectors.

To summarize what we have seen two four-vectors:

P = (P0, P1) = (
E

c
, p) (70)

and
X = (x0, x1) = (ct, x). (71)

In the relativistic picture, there emerge four vectors, three of whose
components are familiar vectors from the old days and the fourth is
what used to be a scalar (unaffected by rotations.) Now all four com-
ponents can shuffled with each other, under Lorentz Transformations.
(Note that under just ordinary rotations, the fourth components P0

and x0 are indeed unaffected, it takes a Lorentz transformation, or
going to a moving and not just rotated frame to mix up all four com-
ponents.) Note also that the fourth components are familiar things
times c as in x0 = ct or divided by c, as in PO = E/c. It is for
this reason that people often use unit in which c = 1. For example
you can choose to measure distance in light seconds (distance light
travels in 1 second, that is 3 · 108m/s) and time in seconds. In these
units the speed of light is one light second per second, i.e, c = 1. In
cosmology you may want to use light years for distance and years for
time. Later I will give you some practice in setting c = 1.

Consequences of P being a four vector.

• The components of P transform as a four vector as we go
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from one frame to another:

P
�
1 =

P1 − βP0√
1− β2

(72)

P
�
0 =

P0 − βP1√
1− β2

, (73)

P
�
2 = P2 (74)

P
�
3 = P3 (75)

where β = u

c
. We will ignore P2 and P3 from now on.

It will be instructive for you verify that this transformation law
is in accord with another way of finding P

�
0 and P

�
1. To this

end, consider a particle moving at speed v as seen by unprimed
observer. Write explicit formulas for P0 and P1 in terms of m and
v and keep them handy. Now ask what velocity w this particle
will have as seen by the primed observer moving at velocity u.
Write down her expressions for P

�
0 and P

�
1 in terms of w and

now write w in terms of u and v. Check that the result agrees
with what the LT above gives. This was assigned as a homework
problem. To save paper you may set c = 1 in this exercise.

• PA · PB is invariant, where PA and PB are any two four-
momenta, they could refer to two different particles A and
B or the same particle, in which case A = B.

First consider just one particle and the value of P · P . Since it
can be found in any frame, find it in its own co-moving frame.
In this case P1 = 0 and P0 = mc. Thus

P · P = P
2
0 − P

2
1 = m

2
c
2 (76)

You may verify that if you went to a generic frame and wrote
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down expressions for P0 and P1 in terms of v, you will get the
same result.

This is a very important result: P 2 = m2c2.

( I will start referring to the dot product of a vector with itself
as its square: P 2 ≡ P · P ).

If there are two particles we may assert that

PA · PB = PA0PB0 − PA1PB1 =
EAEB

c2
− PA1PB1 (77)

will have the same value for all observers. For example I can go
the rest frame of particle B, I get PA · PB = EAmB where by
EA I mean the energy of A as measured in the rest-frame of B.

A photon has no rest mass. This means

K · K = 0 (78)

where K is a common name for the momentum as applied to
a photon. It has no rest frame, in any frame it moves at c.
However its components K0, K1 will undergo LT as we change
frames of reference. The components of K again stand for E/c

and momentum of the photon. Zero rest mass means that

K0 = K1 or E = cp. (79)

We will denote the components of K as follows

K = (ω/c, k), (80)

that is, the photon energy is denoted by ω and its momentum
by k with ω = kc because of the condition K · K = 0.

If a photon of energy ω hits me in the face, it might get absorbed
and disappear in which case I will recoil with its momentum k

and my mass will go up due to the absorbed energy.
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What is my new mass m
�? Your guess may be m

� = m + ω/c
2.

Let us work it out.

Let P = (mc, 0) denote my initial energy -momentum and K =
(ω/c, k) that of the photon. In the end there is just me, but
moving at some speed v to conserve momentum and a new rest
mass m�. So we write

P + K = P
� (81)

where

P
� = (

m
�
c

�
1− v2/c2

,
m
�
v

�
1− v2/c2

) (82)

is my final energy-momentum.

Note that Eq. (81) is really four equations, one for each com-
ponent of energy-momentum, just as F = ma is really three
equations. In our problem two of these, in the y and z directions
vanish on both sides assuming the photon is along the x-axis.
Thus in relativity conservation of energy and momentum become
the single conservation law of energy-momentum.

Let me write down the two nontrivial equations:

mc + ω/c =
m�

c
�
1− v2/c2

conservation of energy, more precisely, of E/c.(83)

0 + k = =
m�v

�
1− v2/c2

momentum conservation (84)

Now you can juggle these equations and solve for m�. But here
is a quicker way using four-vectors. Since we just want m

� we
need only calculate P

� · P � = m
�2
c
2. So we proceed as follows

m
�2
c
2 = P

� · P � (85)
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= (P + K) · (P + K) (86)

= P · P + K · K + 2P · K (87)

= m
2
c
2 + 0 + 2(mc

ω

c
− 0 · k) (88)

m
� =

����m2 + 2m
ω

c2
(89)

If ω/mc2
<< 1, i..e, the photon energy is much less than my

rest energy, we can approximate as follows:

m
� = m

����1 + 2
ω

mc2
= m(1 +

ω

mc2
+ ..) = m +

ω

c2
+ .. (90)

in accord with the naive expectation which ignores recoil. In
other words not all the photon energy can go into boosting my
rest mass since I also need to move to conserve the initial photon
momentum. Thus the increased rest energy plus kinetic energy
has to equal the photon energy.

Remember the following trick: in these four-vector equations.,
square that four-momentum about which you know the least
since the answer for the square is always m2

c
2. Another hint:

sometimes the momentum you need to square may not be stand-
ing alone in one side of the equation. If this happens, isolate it
(by moving other terms to the other side) and square it.

• Four momentum if conserved in one frame is conserved in any
frame

The virtue of momentum as we derived it is that if it is conserved
in one frame, it will be conserved in any other. For example if
particles A and B turn into C, D, E, and in one frame we have

Pinitial = PA + PB = PC + PD + PE = Pfinal (91)
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then in any other frame we will have

P
�
initial = P

�
final (92)

because if two vectors Pinitial and Pfinal are equal in one frame
they are equal in any other. This must be clear from analogy
with usual vectors: if A + B = C, that is the three form a
triangle in one frame, then they will also form a triangle in a
rotated frame. Or one can say that since A + B −C = 0, the
null vector, the LHS will be the null (zero) vector in any frame
since the rotated version of the null vector is the null vector. In
the case of the LT, if Pfinal − Pinitial = 0, the difference vector
will vanish in any frame if it vanishes in one.

It also follows that if you did not like my definition of four-
momentum and made up your own, yours may not have the
property of being conserved in all frames if conserved in one.
Conservation is what makes an momentum important quantity
and it has to be a four-vector if it is to be conserved in all frames.

Another worked example: Compton Effect

Imagine a photon of momentum K moving along the axis hitting
a sitting electron of momentum P . If the photon comes back along
the x-axis what is its new energy? I will show you how to do this
problem using units in which c = 1. This makes the notation easier.
I will also show you how in the end we can put back the c’s guided by
dimensions. With these units the initial and final photon momenta
look as follows:

K = (ω,ω), K
� = (ω�,−ω

�) (93)

Why? First since K · K = K2
0 −K2

1 = 0 implies K0 = ±K1, that
is ω/c = ±k which (on setting c = 1) simplifies to ω = ±k with the
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plus (minus) sign for the incoming (reflected) photon. The electron’s
four-momenta are, before and after,

P = (m, 0) P
� = (E, p) with E2 − p2 = m2 (94)

Begin with the conservation law

K + P = K
� + P

� (95)

Since no one cares about the details of P � we isolate and square it
(take dot product with itself) because we know that for any particle,
no matter how it is moving, the square of the four momentum is
m

2
c
2 = m

2.
Here are the details.

P
� · P � ≡ (P �)2 = m

2 = (P + K −K
�)2 (96)

= P
2 + K

2 + K
�2 + 2(P · K − 2P · K � − 2K · K �)(97)

= m
2 + 0 + 0 + 2 (mω −mω

� − (ωω
� − kk

�)) (98)

0 = m(ω − ω
�)− 2ωω

� ( used kk
� = (ω)(−ω

�))(99)
1

ω�
=

1

ω
+

2

m
(100)

1

ω�
=

1

ω
+

2

mc2
(101)

where in the last equation I restored the c2 since ω is an energy and
so is mc2.

Yet another example Question: What is the minimum energy
E of the incident proton that strikes the proton at rest so that in the
end we have a p,p, p, and p̄? (Antiparticles have the same mass as
particles.)

Answer: The energy-momentum of the incident proton is P1 =
(E, p), that of the target is P2 = (m, 0). (Remember c = 1). In the
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lab frame the total momentum is

P
Lab

Tot = P1 + P2 = (E + m, p)

See Fig. 3.
In the minimal reaction the final four particles will have the mini-

mum energy, but they can’t all be at rest due to momentum conser-
vation. So we go to the CM frame in which the two initial protons
approach each other with opposing spatial momenta, that is their
four-momenta are (Ē, p̄) and (Ē,−p̄). Thus the initial total mo-
mentum is PCM

Tot = (2Ē, 0). The final four-momentum of the four
particles, now allowed to be created at rest, is

P
CM

Tot = (4m, 0).

Now recall that for any four-vector V
µ = (V 0

, V
1),

V · V = (V 0)2 − (V 1)2

is invariant, same in all frames. Apply this to the total momentum
and remember that for any one particle P · P = E

2− p
2 = m

2. We
find

CM frame PTot · PTot = 16m2

Lab frame PTot ·PTot = E
2+m

2+2mE−p
2 = m

2+m
2+2Em

which gives the desired result

E = 7m

or 7mc2 if you put back c.
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(E,p) (m,0)

LAB FRAME 

Center of Mass Frame

(E,p) (E,-p)
(m,0)

(m,0)
(m,0)

(m,0)

INITIAL                                          FINAL 

Figure 3: The reaction seen in lab and CM frames. (E=Energy, p=momentum) given in
brackets. Arrows indicate the spatial motion.


