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The main lesson of the last class was the following:

Main Lesson If a mixed strategy is a best response then each of the pure strategies involved in the mix must
itself be a best response. In particular, each must yield the same expected payo�.

Before explaining why this must be true, let's just try to rewrite this lesson formally, using our new notation:

More Formal statement of the Same Lesson. If player i's mixed strategy pi is a best response to the
(mixed) strategies of the other players, p�i, then, for each pure strategy si such that pi(si) > 0, it must
be the case that si is itself a best response to p�i: In particular, Eui(si; p�i) must be the same for all
such strategies.

Why is this true? Suppose it were not true. Then there must be at least one pure strategy si that is
assigned positive probability by my best-response mix and that yields a lower expected payo� against p�i.
If there is more than one, focus on the one that yields the lowest expected payo�. Suppose I drop that
(low-yield) pure strategy from my mix, assigning the weight I used to give it to one of the other (higher-
yield) strategies in the mix. This must raise my expected payo� (just as dropping the player with the lowest
batting average on a team must raise the team average). But then the original mixed strategy cannot have
been a best response: it does not do as well as the new mixed strategy. This is a contradiction.

So what? An immediate implication of this lesson is that if a mixed strategy forms part of a Nash
Equilibrium then each pure strategy in the mix must itself be a best response. Hence all the strategies in
the mix must yield the same expected payo�. We will use this fact to �nd mixed-strategy Nash Equilibria.

Finding Mixed-Strategy Nash Equilibria. Let's look at some examples and use our lesson to �nd the
mixed-strategy NE.

Example 1 Battle of the Sexes

a b
A 2; 1 0; 0
B 0; 0 1; 2

In this game, we know that there are two pure-strategy NE at (A; a) and (B; b). Let's see if there are any
other mixed-strategy NE. Suppose that there was another equilibrium in which the row mixed on both A
and B. By our lesson of the day, we know that in this case both A and B must be best responses to whatever
the column player is doing. But for them both to be best responses, they must both yield the same expected
payo� for the row player. We will use this fact about row 's expected payo�s to �nd what column must be
playing!
Suppose that column's mixed strategy assigns probability weight q to a and probability weight (1 � q)

to b. Then,

row's expected payo� from A against (q; 1� q) = q [2] + (1� q) [0] = 2q
row's expected payo� from B against (q; 1� q) = q [0] + (1� q) [1] = 1� q

But if these expected payo� are to be equal, we must have 2q = 1� q or q = 1
3 .
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To summarize so far, if row is mixing on both her strategies in a NE then both must yield the same
expected payo�, in which case column must be mixing with weights

�
1
3 ;

2
3

�
.

Notice the trick here: we used the fact that, in equilibrium, row must be indi�erent between the strategies
involved in her mix to solve for column's equilibrium mixed strategy.

Now let's reverse the trick for �nd row's equilibrium mix. If there is an equilibrium in which the column
mixes on both a and b, then (by our lesson of the day) we know that both a and b must be best responses
to whatever row is doing. But for them both to be best responses, they must both yield column the same
expected payo�. We will use this fact about column's expected payo�s to �nd what row must be playing.
Suppose that row's mixed strategy assigns probability weight p to A and probability weight (1 � p) to B.
Then,

column's expected payo� from a against (p; 1� p) = p [1] + (1� p) [0] = p
Row's expected payo� from b against (p; 1� p) = p [0] + (1� p) [2] = 2 (1� p)

But if these are to be equal, we have 2 (1� p) = p or p = 2
3 .

To summarize, if column is mixing on both her strategies in a NE then both must yield the same expected
payo�, in which case row must be mixing with weights

�
2
3 ;

1
3

�
. We used the fact that, in equilibrium, column

must be indi�erent between the strategies involved in her mix to solve for row's equilibrium mixed strategy.

I claim that the mixed-strategy pro�le
��
2
3 ;

1
3

�
;
�
1
3 ;

2
3

��
is a NE. To show this I still need to check that neither

player has a strictly pro�table deviation but this turns out to be easy. We constructed the equilibrium so
that, given column's mix,

�
1
3 ;

2
3

�
, each of row's pure strategies, A and B yields the same expected payo�.

But, in this case, any mix of those pure strategies (including the equilibrium mix itself) will yield the same
expected payo�. So all potential deviations yield the same expected payo�: none are strictly pro�table. The
same argument applies to column.

Example 2. Rock, Scissors, Paper.

r s p
R 0; 0 1;�1 �1; 1
S �1; 1 0; 0 1;�1
P 1;�1 �1; 1 0; 0

In this game, we `know' that the mixed-strategy NE is
��
1
3 ;

1
3 ;

1
3

�
;
�
1
3 ;

1
3 ;

1
3

��
, but let's use the method from

the last example to `�nd' the equilibrium as if we did not know. Once again, suppose that there is an
equilibrium in which row is mixing on all of R, S and P . By our lesson of the day, we know that in this
case R, S and P must each be a best response to whatever the column player is doing. But for them each to
be best response, each must yield the same expected payo� for the row player. We will use this fact about
row 's expected payo�s to �nd what column must be playing.
Suppose that column's mixed strategy assigns probability weight qr to R, qs to S and (1� qs� qr) to P .

Then,

row's expected payo� from R against (qr; qs; 1� qr � qs) = qr [0] + qs [1] + (1� qr � qs) [�1]
row's expected payo� from S against (qr; qs; 1� qr � qs) = qr [�1] + qs [0] + (1� qr � qs) [1]
row's expected payo� from P against (qr; qs; 1� qr � qs) = qr [1] + qs [�1] + (1� qr � qs) [0].
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Setting these three expected payo�s equal to one another (and using a little basic algebra) solves to qr =
qs = (1� qr � qs) = 1

3 .
To summarize, if row is mixing on all of her strategies in a NE then each must yield the same expected

payo�, in which case column must be mixing with weights
�
1
3 ;

1
3 ;

1
3

�
. Once again, we used the fact that,

in equilibrium, row must be indi�erent between the strategies involved in her mix to solve for column's
equilibrium mixed strategy.
We could do the same to �nd row's equilibrium mix. That is, we could use the fact, in equilibrium,

column must be indi�erent between the strategies involved in her mix to solve for row's equilibrium mixed
strategy. However, since the argument is symmetric, let's skip it. As in the previous example, checking
that neither player has a strictly pro�table deviation is easy. We constructed the equilibrium so that, given
column's mix, each of row's pure strategies yields the same expected payo�. But, in this case, any mix
of those pure strategies (including the equilibrium mix itself) will yield the same expected payo�. So all
potential deviations yield the same expected payo�: none are strictly pro�table. The same argument applies
to column. So we have shown that this is an equilibrium.

For nerds only. In this example, it is a little more involved to show that there are no other mixed-strategy

equilibria. We have shown that in the only equilibrium in which each player mixes on all of her strategies, each player

mixes
�
1
3 ;

1
3 ;

1
3

�
. But, in principle, there could be other mixed-strategy equilibria in which one player only mixes on

two of her three strategies. Let me sketch the argument why no such equilibrium exists. Suppose there was such an

equilibrium. Without loss of generality, let column be the player who mixes on two of her strategies, and without

loss of generality, assume that column's mixes only on r and s; that is, column's mixed strategy assigns probability
zero to r. Given this, row's expected return from R is strictly greater than that from S. Thus, row's best response
must assign probability zero to S. But, given this, column's expected return from p is strictly greater than that from
r. Thus, column's best response must assign probability zero to r. But if column assigns zero probability to p (by
assumption) and zero probability to r (as we have just shown), then he must be playing the pure strategy s. But we
already know that neither can be playing a pure strategy in any equilibrium of rock, scissors paper.

What did we learn here? We have found a general method to �nd mixed-strategy Nash Equilibria.

Method to �nd mixed-strategies NE Suppose we conjecture that there is an equilibrium in which row
mixes between several of her strategies. If there is such an equilibrium then each of these strategies
must yield the same expected payo� given column's equilibrium strategy. If we write down these payo�s
[just as we did in the examples above] we can solve for column's equilibrium mix. In other words,
row's indi�erence among her strategies implies column's equilibrium mix. Now we reverse. Look at the
strategies that column is mixing on, write down column's indi�erence condition, and solve for row's
equilibrium mix.

We are almost done but we still need to check a few (easy) things. First, the equilibrium mix we have
found for row must indeed involve those strategies from which we started our conjecture! Second, each
of the mixing probabilities we have constructed must indeed be probabilities: they must lie between zero
and one! Third, as always, we need to check that neither player has a strictly pro�table deviation. But,
[as we saw in the examples above] if the mix involved all strategies then this last check is for free!


