
Midterm Solutions

(I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel (a solid disc) of mass
M , radius R, anchored at its center but free to rotate. (i) Which of energy, momentum and angular momentum
is conserved for the bullet+wheel system? Give a few words of explanation. (ii) Find ωf the final angular velocity
of the wheel. 10

(i) Only angular momentum is conserved. The collision is an inelastic collision, so energy cannot be conserved.
Momentum is not conserved because there is an external force acting at the center of the wheel that keeps
the wheel-bullet system from moving forward after the collision. Angular momentum is conserved because
there are no external torques acting on the system. (The force acting at the center of the wheel does not
provide a torque because it is acting at the pivot point.)

(ii) To find ωf , we equate the angular momentum of the system just before the bullet hits the wheel with the
final angular momentum of the rotating bullet-wheel system.

mvR = ωf (Iwheel + Ibullet)

= ωf

(
1
2
MR2 + mR2

)
ωf =

v

R

(
1

1 + M
2m

)
.

Please note that linear momentum p and angular momentum L are not equivalent. They have separate
conservations laws, different units, and measure fundamentally different quantities. You cannot equate p
to L.

(II) A block of mass M sits on frictionless table L meters from the edge. At t = 0 bullet of mass m and velocity v1

penetrates it from left and exits to the right with a speed v2. (i) When will the block fly off the table? (ii) If
the table has a height h how far from the edge of the table will it land? 10 (Neglect loss of wood in block due to
bullet penetrating it and the time it takes bullet to traverse block.)

(i) To find when the block will fly off the table, we need to calculate the final velocity of the block by conserving
momentum before and after the collision.

mv1 = mv2 + Mv =⇒ v =
m

M
(v1 − v2)

There are no external forces on the block, so the block will fly off the table at

t =
L

v
=

M

m

(
L

v1 − v2

)
.

(ii) To find the distance the block travels in the x direction after leaving the table, we first need to find the
total time it spends in the air. We know that the block falls a distance h in the y direction and has no
initial velocity in y. This tells us that

h =
1
2
gt2 =⇒ t =

√
2h

g

(clearly, the negative solution for t is not physical for this problem). There are no forces in the x direction,
so the total distance the block travels once it leaves the table is

x = vt = (v1 − v2)
m

M

√
2h

g
.

(III) Consider the force F = i2xy3 + j3x2y2 . (i) Show that it is conservative. (ii) What is the potential energy
U(x, y) associated with it ? (iii) What is the work done by the force along a path y = x123456789 joining (0, 0) to
(1, 1)? 10
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(i) A force given by F = iFx + jFy is conservative if ∂Fx

∂y = ∂Fy

∂x . This is because in order for a force to be
conservative, it must be described by a potential that satisfies ∂U

∂x∂y = ∂U
∂y∂x where U = −

∫
F · dx. In this

case, the condition for F to be conservative gives

∂Fx

∂y
= 6xy2 and

∂Fy

∂x
= 6xy2,

so F is conservative.
(ii) We know that

∂U

∂x
= −Fx and

∂U

∂y
= −Fy,

The only function that satisfies these conditions (up to a constant) is U(x, y) = −x2y3.
(iii) The work done between points 1 and 2 for a conservative force is∫ 2

1

F · dx = −U(2)− (−U(1))

= U(1)− U(2)
= U(0, 0)− U(1, 1)
= −(−1)
= 1

You could have also integrated along the path given in the problem or any other path you wanted to get
the correct answer. Since the force is conservative, the answer is path independent.

(IV) (i) Why can a body with total energy E < 0 not escape to infinity? 3

For a body bound in a gravitational potential,

E =
1
2
mv2 − GMm

R
.

If R = ∞ then the potential energy term is zero and E will necessarily be greater than or equal to zero. Hence,
for a mass with E < 0, R must always have a finite value and therefore the mass can never escape to infinity.
(Just saying that a body must have E > 0 to escape from a gravitational potential is not sufficient because you
just restated the question. You must explain why that is the case.)

(ii) I give you a spring of unknown force constant k, a meter stick , a clock, a 1kg mass and a block of wood
at rest on a table. How will you find µs, the coefficient of static friction between the block and the table. (Help
yourself to my tool box with massless hooks, nails etc.) 7

The coefficient of static friction measures the maximum frictional force available while the block is not moving.
(If I measured the force due to friction of a moving block, this would give the coefficient of kinetic friction.) The
experiment that I want to do to find µs is to place the block of wood on the table and attach the spring between
the block and a wall (see Figure 1a). I will then measure the maximum distance I can pull the block away from
the wall without it being pulled back by the spring. This maximum distance occurs when the force exerted by
the spring just balances the maximum frictional force. Take the mass of the block to be M , so N = Mg on a
flat surface. Balancing the forces we have,

Ma = 0 = −kA + µsN =⇒ µs =
kA

Mg
(1)

where A is how far I can pull the mass before it just starts to move.

To determine µs from this equation, I need to measure M , and k. I can find k by hanging the 1 kg mass (m)
from the spring and measuring the spring’s displacement xm (see Figure 1b). Balancing the force due to gravity
with the force from the spring

mg = kxm =⇒ k =
mg

xm
.
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FIG. 1: Experiments for problem 4 for part (ii).

Now, I can repeat this experiment, but using the block M . Plugging in for k this gives,

Mg = kxb =
mg

xm
xb =⇒ M = m

xb

xm
.

Now we can plug back into equation 1 for µs

µs =
kA

Mg

=
A

g

mg

xm

xm

mxb

µs =
A

xb
.

So, we really only need to do two experiments to determine µs. We need to hang the block from the spring
under the influence of gravity and measure how far the spring stretches. This is xb. We then need to attach the
spring to a wall such that the block can sit on the table and measure how far you can pull the block away from
the wall before the spring can begin to pull it back. This gives us A. The coefficient of static friction is then
just A/xb.

(iii) I give you two spheres of same mass M and radius R, one solid and one hollow, and an incline on which
they can roll without slipping. Explain how you will say which is which, giving me some idea you understand
why your suggestion will work. 5

By conservation of energy,

Mgh =
1
2
Mv2 +

1
2
Iω2

=
1
2
M(Rω)2 +

1
2
Iω2

If you start both spheres rolling at the same heigh h, they will have the same energy at the bottom of the
inclined plane. Since the energy must be the same, it is clear that which ever sphere has a larger moment of
inertia, I, will have a smaller value of ω. The hollow sphere will have a larger moment of inertia because all
of its mass is located a distance R from the center. The solid sphere has its mass distributed between r = 0
and r = R. So, if you roll both of the spheres down the inclined plane starting from the same heigh, the hollow
sphere will be the one moving more slowly at the bottom.

(V) A mass m tethered to a massless string is spinning in a vertical circle, keeping its total energy constant. Find
the difference in the (magnitude of) the tension between the top most and bottom most points. 10

When the mass is at the top of the circle, both the tension from the string and gravity point down, as shown in
Figure 2. Equating these forces with the force required to keep the mass moving in a circle we find

m
v2

t

R
= mg + Tt =⇒ Tt = m(

v2
t

R
− g)



4

FIG. 2: Figure for problem 5 that shows the forces on the ball ball both at the top and bottom of the circle. The angular
acceleration, v2/R, always points towards the center.

where Tt is the tension at the top and vt is the velocity at the top. When the mass is at the bottom of the circle,
the tension points up towards the center of the circle, while gravity acts down. Again, balancing the forces,

m
v2

b

R
= −mg + Tb =⇒ Tb = m(

v2
b

R
+ g).

The difference between Tb and Tt is

|Tb| − |Tt| = m

(
v2

b − v2
t

R
+ 2g

)
. (2)

Now we need to find an equation for v2
b −v2

t . The other piece of information that we are given is that the energy
is constant. Equating the energy at the top and bottom of the circle we find

1
2
mv2

b =
1
2
mv2

t + 2mgR

4gR = v2
b − v2

t

Plugging this result into equation 2 we find that the difference in the tension is

|Tb| − |Tt| = m(4g + 2g) = 6mg.

(VI) A horizontal rod of length L and mass M has a mass m at one end. It is supported by pivot P on the wall at
the left end and a cable at angle of θ at the other end as shown in Figure 3.
(i) Find T , the tension on the cable.
(ii) If the cable snaps, with what angular velocity ω will the rod swing down and slam into the wall? 15

(i) In this part of the problem everything is stationary, so the sum of the torques must equal zero. As shown
in Figure 3, there are three forces in this problem that are not acting at the pivot P , the tension in the
cable, the force of gravity from mass m, and the force of gravity from the rod M . Calculating the torques
about the pivot P , ∑

τ = 0 = Mg(L/2) + mgL− TL sin θ

T =
g

sin θ

(
M

2
+ m

)
.

(ii) If the cable snaps, we can conserve energy to find the angular velocity when the rod hits the wall. Just
when the cable snaps, the rod is at rest, so the only energy is potential energy. If we take the distance L
below the pivot to have zero potential energy, then initially, the energy of the system is

Ei = (M + m)gL.
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FIG. 3: The forces on the rod in problem 6.

When the rod reaches the wall, the rod-mass system will have some angular velocity ω and the center of
mass of the rod will be at a height L/2, so the final energy is

Ef = Mg
L

2
+

1
2
Imω2 +

1
2
Irodω

2.

The mass m is a distance L from the pivot, so Im = mL2. A rod has a moment of inertia I = ML2/12
about its center of mass. Using the parallel axis theorem, the moment of inertia of the rod about the pivot
is Irod = ML2/12 + M(L/2)2 = ML2/3. Plugging in the moments of inertia and setting the initial and
final energies equal,

gL(M + m) = Mg
L

2
+

1
2
(
mL2

)
ω2 +

1
2

(
1
3
ML2

)
ω2

g

(
m +

M

2

)
= ω2

(
mL

2
+

ML

6

)
ω2 =

g

L

(
2m + M

m + M/3

)
ω =

√
g

L

(
2m + M

m + M/3

)
.

Alternatively, you can do this problem using torques and acceleration. This is significantly more complicated,
and you don’t need to know how to do this; however, many of you tried, so this is the solution. The torque on
the beam is τ = Iα = α(mL2 + 1

3ML2). You can also calculate the torque using forces, but note that as the
beam falls, the component of the force acting perpendicular to the beam changes.

τ = mgL sinφ + Mg
L

2
sinφ

where φ is the angle the beam makes with the wall. Now, we can equate these two equations for torque and
recognize that α is the second derivative of φ with respect to time or α = φ̈. We find that,

g sinφ

(
m +

M

2

)
= L

(
m +

1
3
M

)
φ̈. (3)

Now, I will integrate this equation with respect to φ from φ = π/2 to φ = π. This is easy for the left hand side
of Equation 3, but a little more complicated for the right hand side. On the right hand side, I want to integrate
with respect to time because that will give me φ̇ = ω. Multiplying dφ by dt/dt, dφ = dφ

dt dt = φ̇dt. Carrying out
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the integration, ∫ π

π/2

g sinφ

(
m +

M

2

)
dφ =

∫ tf

0

L

(
m +

1
3
M

)
φ̈φ̇dt

− g

L

(
m +

M

2

)
(cos(π)− cos(π/2)) =

(
m +

1
3
M

)
φ̇2

2
|t=tf

t=0

g

L

(
m +

M

2

)
=
(

m +
1
3
M

)
ω2

f

2

ω2
f =

g

L

(
2m + M

m + M/3

)
which is the same answer we found above using energy conservation.


