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Suppose that strategies or behavior in games are not chosen by reasoning people, but instead are `hard-wired'
by the players' genes. Suppose further that those strategies that are relatively successful (or rather, the genes
associated with those strategies and behaviors) grow while less successful strategies die out. We might want
to ask what strategies will be selected by such an evolutionary process. This question has led biologists to
use game theory to study animal behavior.
A related question concerns �rms that compete in the market place. Perhaps the �rms' policies are not

chosen by sophisticated game theorists, but rather are associated with `rules of thumb'. In this case, those
�rms with rules of thumb that are worse (given the rules of thumb of the other �rms) might go bankrupt,
leaving only a `population' of �rms with more successful rules. Such competition might mimic rational choice
in that the outcome might be that only `well-run' �rms survive.
We will limit our discussion for the week to a simpli�ed case.

� We will look only at symmetric 2-player games.

� We will assume that there is a very large population of players each of whom is `hard-wired' to play a
particular strategy. Thus the population could (potentially) involve a mix of strategies.

� The players are randomly matched into pairs.

� We look at the average payo�s attained by strategies across these pairings.

� We assume that those strategies whose average payo�s are higher than others grow relative to those
others in the population mix. (Notice that this says nothing about how the population does as a
whole).

� Implicitly, we are assuming only asexual reproduction. That is, we will ignore the many interesting
questions that involve interaction of animals with the same genes, or involve pairings of dominant and
recessive genes in each particular animal.

1. Ideas and Examples

The key idea will be the following.

Evolutionary Stability (very loose de�nition) Consider a large population all of whom are playing the
same strategy. The strategy is called evolutionarily stable if any small mutation playing a di�erent
strategy would die out.

Example 1. Prisoners' Dilemma: strictly dominated strategies are not ES.

cooperation non-cooperation
cooperation 2; 2 0; 3

non-cooperation 3; 0 1; 1

Suppose everyone in the population is hard-wired to play cooperation. Now suppose that there is a small
mutation hard-wired to play non-cooperation. The population mix is then (1 � ") cooperators and " non-
cooperators. Each cooperator and each non-cooperator will be randomly paired with another animal, so
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each will have a (1 � ")-chance of being paired with cooperator and an "-chance of being paired with a
non-cooperator. The average payo�s to the incumbent cooperators is then

(1� ") [2] + " [0] ,

while the average payo� to the mutant non-cooperators is

(1� ") [3] + " [1] .

Clearly, the non-cooperative mutants do better (on average) than the cooperative incumbents. This mutation
will not die out. Thus, a population that consists 100% of cooperators is not evolutionarily stable.
Conversely, suppose everyone in the population was hard-wired to play non-cooperation. And now

suppose that there is a small mutation hard-wired to play cooperation. The population mix is then (1� ")
non-cooperators and " cooperators. Each cooperator and each non-cooperator will be randomly paired with
another animal, so each will have a (1 � ")-chance of being paired with non-cooperator and an "-chance of
being paired with a cooperator. The average payo�s to the incumbent non-cooperators is then

(1� ") [1] + " [3] ,

while the average payo� to the mutant cooperators is

(1� ") [0] + " [2] .

Clearly, the cooperative mutants do worse (on average) than the non-cooperative incumbents. This mutation
will die out. Thus, a population that consists 100% of non-cooperators is evolutionarily stable.
Thus, the �rst lesson of this part of the course is as follows.

Lesson `Evolution can suck'. Evolutionary stability does not imply nice or good or e�cient.

This example also illustrates (but does not prove) a general idea.

Lesson Strictly dominated strategies cannot be evolutionary stable.

Try to convince yourself of this at home. [Hint: consider a strictly dominating mutation.]

Example 2. Evolutionary Stability implies Nash.

a b c
a 2; 2 0; 0 0; 0
b 0; 0 0; 0 1; 1
c 0; 0 1; 1 0; 0

Suppose everyone in the population was hard-wired to play strategy c. Strategy c is not dominated but
nevertheless (c; c) is not a NE. In particular, strategy b does strictly better against c than c does against
itself. This suggests that a mutation of b's will not die out if it invades the all-c population. To show this,
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consider a small mutation hard-wired to play b so that the population mix is then (1 � ") playing c and "
playing b. The average payo� to the incumbents hard-wired to play c is then

(1� ") [0] + " [1] ,

while the average payo� to the mutant b's is then

(1� ") [1] + " [0] :

Since " is small, the mutant b's will do better (on average) than the incumbent c's, and not die out. Thus, a
population that consists 100% of c's is not evolutionarily stable. (Notice that the mutation here, b, is itself
not evolutionarily stable { a 100% population of b's can be invaded by c's.)
This suggests the following generalization:

Lesson If (ŝ; ŝ) is not a NE then ŝ is not evolutionarily stable. Or, equivalently: if ŝ is evolutionarily stable
then (ŝ; ŝ) is a NE.

Try to convince yourself of this at home. [Hint: consider a mutation that is hard-wired to play what would
be a pro�table deviation.]
In this example, it is easy to check that a is evolutionarily stable. Notice that (a; a) is also a NE. But

unfortunately not all Nash strategies are evolutionarily stable.

Example 3. Nash does not imply Evolutionary Stability.

a b
a 2; 2 0; 0
b 0; 0 0; 0

In this example, both (a; a) and (b; b) are NE. But b is not evolutionarily stable. Consider a population in
which everyone was hard-wired to play b and consider a small "-mutation hard-wired to play a. The average
payo� of the incumbent b's would then be

(1� ") [0] + " [0]

while the average payo� of the mutant a's would be

(1� ") [0] + " [2] .

Clearly, the mutation does better than the incumbent and would not die out, and hence a population that
consists 100% of b's is not evolutionarily stable.
Notice the reason the mutant a's did better than the incumbent b's. When matched with incumbent b's

(which happened with chance (1� ")) both a's and b's did equally well: both got a payo� of 0. What made
the mutant a's more successful was that they did better when matched with other mutants (which happened
with chance ").
In this example, it is easy to check that a is evolutionarily stable (do so at home). What is di�erent

about the (a; a) equilibrium in this game? It is a strict NE. This suggests the following generalization.
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Lesson If (ŝ; ŝ) is a strict NE then ŝ is evolutionarily stable.

Try to convince yourself of this at home. [Hint: consider any mutation and notice that it does strictly worse
whenever it is matched with an incumbent (which happens with chance (1� ")).]

2. Formal de�nitions

The time has come to give a fairly formal de�nition to Evolutionary Stability.

Formal De�nition 1 In a 2-player, symmetric game, the pure strategy ŝ is evolutionarily stable in pure
strategies if there is a (small) mutation size �" such that for all mutations of size " smaller than �"
hard-wired to play some other strategy s0

(1� ")u (ŝ; ŝ) + "u (ŝ; s0) > (1� ")u (s0; ŝ) + "u (s0; s0) .

Look at the left of the inequality. It is the average payo� of the incumbent strategy ŝ against the mixed
population that has (1� ") incumbents hard-wired to play ŝ and " mutants hard-wired to play s0. To the
right of the inequality is the average payo� of the mutant strategy s0 against the same mix. The strict
inequality tells us that if ŝ is evolutionarily stable then the mutation must do strictly worse. The part about
�" just says we don't care about large mutations but do care about small mutations.

Now let me provide another equivalent de�nition.

Formal De�nition 2 In a 2-player, symmetric game, the pure strategy ŝ is evolutionarily stable in pure
strategies if

(a) (ŝ; ŝ) is a NE; that is., u (ŝ; ŝ) � u (s0; ŝ) for all s0; AND

(b) If (ŝ; ŝ) is not a strict NE (that is, there is some s0 6= ŝ such that u (ŝ; ŝ) = u (s0; ŝ)), then
u (ŝ; s0) > u (s0; s0).

Compare this second de�nition to the examples and lessons above. Part (a) says that any evolutionarily
stable strategy must be Nash. Part (b) says two things. First, if a strategy is strict Nash, then there is
nothing else to check: it is evolutionarily stable. But if a strategy is Nash but not strict Nash, then (and
only then) we need to check a second condition. The second condition says: if the mutation does as well
against the incumbent as the incumbent does against itself, then to be evolutionarily stable the incumbent
must do strictly better against the mutant than the mutant does against itself. This was the condition that
strategy b failed in the third example above.
There are two reasons why the second de�nition is interesting. First, as we shall discover, in purely

practical terms, it is much easier to check than the �rst de�nition. Second, on more intellectual terms, it is
a remarkable fact that a key concept from modern economics, Nash equilibrium, should be so closely related
to a key concept from modern biology, evolutionary stability. For nerds like me, there is something almost
awe-inspiring about this coincidence.
For this course, you do need to know the two de�nitions above but you do not need to know the proof.

It is just for nerds.



Handout on Evolutionary Stability in pure strategies 5

Sketch of a proof. We can rewrite the inequality in de�nition 1 as follows

(1� ") [u (ŝ; ŝ)� u (s0; ŝ)] + " [u (ŝ; s0)� u (s0; s0)] > 0.

The �rst [term] compares the payo� of the incumbent and the mutant against the incumbent. The second
[term] compares the payo� of the incumbent and the mutant against the mutant. The �rst term has weight
(1� ") since this is the chance of being paired with an incumbent. The second term has weight " since this
is the chance of being paired with a mutant. Since the inequality must hold for all " (smaller than some
�"), if the �rst term is strictly negative we are in trouble. By choosing " arbitrarily small, we can make the
weight of the second term arbitrarily small, and hence make the entire left side negative. Thus we need the
�rst term to be weakly bigger than zero. This is exactly what part (a) of de�nition 2 says. Conversely, if
the �rst term is strictly positive, we are done. The �rst de�nition allows us to choose " (or more formally
�") to be as small as we like, so we can choose the weight " on the second term arbitrarily small and ensure
that the entire left side is positive. Thus if the �rst term is strictly positive for all s0 then ŝ is evolutionary
stable. This is exactly saying that strict NE is su�cient. Finally, if (and only if) the �rst term is exactly
zero, then we have to look at the second term to check if ŝ is evolutionarily stable. But this is exactly what
part (b) of the second de�nition says.


