1. An electromagnetic wave has an electric field

\[E = k \, 1000 \sin(20y + \omega t) \] (1)

(i) What is \(\omega \)? (ii) What is the frequency \(f \)? (iii) What is the direction of travel? (iv) What is \(B \)? (v) What is the average energy density \(\bar{u} \) in \(J/m^3 \) and average intensity \(\bar{S} \) in \(W/m^2 \)?

2. I live 10 km from a 50kW station. What is the peak strength of \(E \) and \(B \) in my house?

3. The smallest wavelength the eye can see is roughly 400nm. What is the frequency?

4. A plane wave traveling along the y-axis has

\[E = (i + k) \, E_0 \sin(ky - \omega t). \]

Find the corresponding \(B \) (its magnitude, direction, and \((y, t) \) dependence). You can use the example we did in class (polarized along \(k \)), superposition and rotational symmetry arguments to guess your answer.

5. Imagine a wave in vacuum traveling along the z axis with

\[E = i \, E_0 \cos(kz - \omega t) \quad B = j \, B_0 \cos(kz - \omega t) \] (2)

(i) Show that the surface integrals of \(E \) and \(B \) obey the Maxwell equations. (ii) Consider the line integrals on three independent planes and write the corresponding equations relating \(\frac{\partial E_x}{\partial z}, \frac{\partial E_y}{\partial t}, \frac{\partial B_y}{\partial z}, \frac{\partial B_z}{\partial t} \). Determine the relation between \(E_0 \) and \(B_0 \) and \(\omega \) and \(k \) that these imply. (Just modify what was done in class. Do not spend too much time on this one.)