Lecture 22 28 Nov 07

last time repeated interaction

need: gain if cheat

today [value of relationship after cooperation] - [value of relationship after cheating]

tomorrow

promise threat

Credibility: focus of SPE

Prisoner's dilemma repeated with prob δ of continuing

\[
\begin{array}{c|c|c|c}
\text{C} & \text{D} \\
\hline
\text{C} & 2,2 & -1,3 \\
\text{D} & 3,-1 & 0,0 \\
\end{array}
\]

grim trigger: play C, then

\[
\text{play } \begin{cases} \text{C if no one has ever defected} \\ \text{D otherwise} \end{cases}
\]

Temptation \[
\frac{3-2}{\delta}
\]

\[
2(\delta^2) + \delta^3 + \delta^4 + \ldots = \frac{\delta^2}{1-\delta}
\]

\[
\frac{\delta^3}{1-\delta} + \delta^4 + \delta^5 + \ldots = \delta X
\]

\[
X = 2 \frac{\delta}{1-\delta}
\]

<< Is grim trigger an equilibrium [when both play it]? >>

\[
\begin{align*}
1 & \leq \left[\frac{2}{1-\delta} - 0 \right] \delta \\
\Leftrightarrow 1-\delta & \leq 2 \delta \\
\Leftrightarrow \delta & \geq \frac{1}{3}
\end{align*}
\]

How about playing D now, then C, then D forever?

\[
(D,C),(C,D),(D,D),(D,D) \rightarrow 3 + 3(1) + 0 + 0 \ldots = 3 - 8
\]

This defection is even worse (than the previous defection of D,D,D, ...)

Punishment (D,D) forever is a SPE

How about cheating, not in the first period, but in the second?

The same analysis says this is not profitable if \[\delta \geq \frac{1}{3} \]

Lesson: we can get cooperation in PD (prisoners' dilemma) using grim trigger (as a SPE) provided \[\delta \geq \frac{1}{3} \]

Lesson: For an ongoing relationship to provide incentives for good behavior, it helps for there to be a high probability that the relationship will continue. weight you put on the future

<< What about a less draconian strategy? >>

One-period punishment ...

Open Yale courses

© Yale University 2012. Most of the lectures and course materials within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Please consult the Open Yale Courses Terms of Use for limitations and further explanations on the application of the Creative Commons license.
one period punishment

\[
\text{play } C \text{ to start, then}
\]
\[
\begin{align*}
\text{play } C \text{ if either } (C,C) \text{ or } (D,D) \text{ were played last} \\
\text{D if either } (C,D) \text{ or } (D,C) \text{ were played last}
\end{align*}
\]

is this an SPE?

\[
\text{temptation } \leq \left(\text{value of promise } \right) - \left(\text{value of threat } \right)
\]

\[
3 - 2 \leq \left(\frac{2}{1-\delta} \right) - \delta \left(\frac{2}{1-\delta} \right)
\]

\[
\Rightarrow \quad 1 \leq \frac{2\delta}{1-\delta} [1-\delta]
\]

\[
\Rightarrow \quad \frac{1}{2} \leq \delta
\]

Trade off
shorter punishments need more weight (\(\delta\)) on future

<< Example to show repeated interaction works >>
Repeated Moral Hazard

+ labor cheap
 - contracts hard to enforce

\[
\begin{array}{c}
\text{Invest } t \text{ (w)} \\
\text{Honest } 3 - w, w
\end{array}
\]

\[
\begin{array}{c}
\text{Cheat } -1, 2
\end{array}
\]

\[
\begin{array}{c}
\text{worse } 0, 1
\end{array}
\]

if set \(w = 1\) (the going wage in Fredonia)
then the agent will cheat
to make him be honest,
need \(w > 2\)
incentive design
In equilibrium, \(w^* = 2\), the agent works
Wage premium in this emerging market is 100%

\begin{itemize}
 \item Consider repeated interaction with prob \(\delta\)
 \item what wage \((w^*)\) will you pay?
 \item temptation to cheat today \(\leq \delta \left[\left(\text{value of continuing the relationship } \right) - \left(\text{value of ending the relationship } \right) \right]
 \item "Continuing" "firing"
 \item \(2 - w^* \leq \left[\left(\frac{w^*}{1-\delta} \right) \text{ forever } \right] - \left(\frac{1}{1-\delta} \right)\delta
 \item \(\left(1-\delta\right)^2 - \left(1-\delta\right) \text{ w}^* \leq w^* \delta - [1] \delta
 \item \(\left(1-\delta\right)^2 \delta [1] \leq w^*
\end{itemize}

\[
\text{or: } 2 - \delta \leq w^*
\]

\begin{itemize}
 \item if \(\delta = 0\), \(w^* = 2\) one-shot wage
 \item if \(\delta = 1\), \(w^* = 1\) going wage
 \item if \(\delta = \frac{1}{2}\), \(w^* = \frac{1}{2}\) wage premium is now only 50%
\end{itemize}

<< to get good behavior, must be a reward >>
<< size of reward related to prob. of future >>