Last time apply SPE
- solve NE in each subgame
- roll back payoffs

Lesson
Strategic effects matter!
- investment game
- tax design
- tolls

2 players
each period each chooses
For Q game ends as soon as someone Q's

Good news
if the other player quits first,
you win a prize
\(V = \$1 \)

Bad news:
each period in which both F
each player pay cost
\(-C = .75 \$\)

If both quit at once
\(\rightarrow 0 \)

Examples
- WWII
- B2B v. Sky
- Wars of Attrition
- bribe contests

Two period game

Two cases:
\(V > C \) \(\leftarrow \) here in class

\(V < C \) \(\leftarrow \) on homework

Second subgame

Two pure-strategy NE in this subgame:
\((F(1), q(1)) \), \((Q(1), f(1)) \)

Payoffs
\((V, 0) \)

\((0, V) \)

First stage revisited

Continuation payoffs

NE

\((F(1), q(1)) \)

\((V, 0) \)

\((0, V) \)

\((0, 0) \)
Pure strategy SPE (with \(v > 2c \))

\[
\begin{bmatrix}
(F(1), F(2)) & (q(1), q(2)) \\
(Q(1), Q(2)) & (f(1), f(2))
\end{bmatrix}
\]

"quitier v. fighter"

<< Now look for mixed strategy eq. >>

Second subgame

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(1)</td>
<td>C-C</td>
</tr>
<tr>
<td>F(2)</td>
<td>V, 0</td>
</tr>
<tr>
<td>Q(1)</td>
<td>0, V</td>
</tr>
<tr>
<td>Q(2)</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

\(p \) (1-p)

```
\text{Mixed NE in this matrix is: both } F \text{ with prob } p^* = \frac{\sqrt{v}}{V + c}
```

```
\text{Mixed SPE } \begin{bmatrix}
(p^*, p^*) & (p^*, p^*) \\
(p^*, p^*) & (p^*, p^*)
\end{bmatrix}
```

E payoff is 0

<< Not pride, craziness >> / in \(V \), \(v \) in \(C \)

Infinite period game

```
\text{Mixed NE has both fight with prob } \frac{v}{V + c}
```

payoffs in this mixed NE = (0, 0)

<< back to first stage >>

```
\text{Stage 2 NE payoffs: } -C + \text{Stage 2 NE payoffs}
```

For the mixed NE in period 2

```
\text{Stage 2 NE payoffs: } -C + \text{Stage 2 NE payoffs}
```

\(p \) (1-p)

\(\text{V+} \text{ continuation values} \)

\(\text{C+} \text{ continuation values} \)

<< Now this analysis is already solved! >>

Same conclusion, too:

both mix with prob \(F = p^* = \frac{\sqrt{v}}{V + c} \)