Ultimatums & Bargaining

2 players 1 and 2

1 can make a "take it or leave it" offer to 2 \((s, 1-s) \)

2 can accept offer \(\rightarrow (s, 1-s) \)

or 2 can reject \(\rightarrow (0, 0) \)

BI \(\rightarrow (99\$, 14) \) or \((100, 0) \)

2-period bargaining

Stage 1
Player 1 makes offer to 2 \((s', 1-s') \)
Player 2 can accept \(\rightarrow (s', 1-s') \)
if 2 rejects

Stage 2
2 gets to make an offer to 1 \((s^2, 1-s^2) \)
1 can accept \(\rightarrow (s^2, 1-s^2) \)
if rejects \(\rightarrow (0, 0) \)

discounting \(\$ \delta > \delta < 1 \)

Solving geometric series

\[
1 - \delta + \delta^2 - \delta^3 + \cdots + \delta^8 - \delta^9 = 5^{10}
\]

\[
\delta - \delta^2 + \delta^3 - \delta^4 - \delta^5 + \delta^6 - \delta^7 - \delta^8 - \delta^9 = 5^{10}
\]

\[
\delta^{10} = \frac{1 - \delta^{10}}{1 + \delta}
\]

\[
\delta^{10} = \frac{1 - \delta^{10}}{1 + \delta}
\]

\[
\delta^{10} = \frac{1 - \delta^{10}}{1 + \delta}
\]
Suppose rapid offers, so $S \approx 1$

$S \rightarrow 1 \Rightarrow S = \frac{1}{2}, \quad 1 - S = \frac{1}{2}$

Conclude
Alternating offer bargaining

1. **Even split if**
 - Potentially can bargain forever
 - $S \rightarrow 1$, no discounting or rapid offers
 - Same discount factor $S_1 = S_2$

 (relax on homework)

2. The first offer is accepted
 (no haggling in equilibrium)

 Value of the pie and the value of time

 \[
 \text{when assumed known}
 \]

<< the poor will do less well in bargaining >>

<< when valuations unknown, sometimes you fail to execute a deal that is efficient >>

(efficient in that buyer's valuation > seller's valuation)