Pls had in PS #7
(PS #8 posted tomorrow)
Names & staples greatly appreciated!

Past & Future of Universe

\[\Rightarrow \text{scale factor } \Omega = 0 \]

\[\Omega < 1 \]

\[2 \times 10^{-18} \]

\[2 \times 10^{-18} \]

\[\Omega > 1 \]

\[\text{define current scale factor to be unity} \]

\[\Omega_{\text{current}} = \frac{1}{9.8 \times 10^{-17}} \]

In 10^6 years there are

\[3 \times 10^7 \times 10^6 = 3 \times 10^{13} \]

Scale factor increases by

\[3 \times 10^{13} \times 2 \times 10^{-18} = 6 \times 10^{-5} \]
Direct measurement of Ω

\rightarrow Dark Matter

Mass in galaxies $\rightarrow \Omega \sim \frac{1}{3}$

Different Approach

Look into past (light travel time)

Measure distance

Time in past: $\frac{D}{C}$

determine scale factor at that time

A different view of redshift

As one view, redshift \rightarrow velocity

Cosmological redshift is not same as velocity
An error view: wavelengths of light expand along with the universe.

So when we observe distant objects, they appear farther away when the light was emitted.

\[\text{distance} = m - M = 5 \log \left(\frac{P_{\text{obs}}}{P_{\text{em}}} \right) \]

\[\text{time} = \text{distance} / c \]

\[\frac{a_{\text{now}}}{a_{\text{then}}} = \frac{\lambda_{\text{obs}}}{\lambda_{\text{em,t}}} = \frac{\lambda_{\text{em,t}} + \Delta \lambda}{\lambda_{\text{em,t}}} = 1 + \frac{\Delta \lambda}{\lambda_{\text{em,t}}} \]

\[a_{\text{now}} = 1 \]

\[\frac{1}{a} = 1 + \varepsilon \quad \text{or} \quad a = \frac{1}{1 + \varepsilon} \]

Open Yale courses

© Yale University 2012. Most of the lectures and course materials within Open Yale Courses are licensed under a Creative Commons Attribution – Noncommercial – Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Please consult the Open Yale Courses Terms of Use for limitations and further explanations on the application of the Creative Commons license.
$m - M = 5 \log \left(\frac{D}{10 \text{pc}} \right)$

$S = \begin{cases} 0 & \eta \leq 1 \\ > 1 & \eta > 1 \end{cases}$

$\eta = \frac{1}{a} = 1 + \frac{2}{3} \log \frac{1 - a}{a}$

$\text{REALLY BRIGHT STANDARD CANDLE}$

$\Rightarrow \text{see it at large distances}$
The diagram illustrates the relationship between distance and magnitude in astronomy. The text below the diagram explains:

- Distance moduli
- \(\Delta (m-M) \)
- Difference between measured \(m-M \) and \(m-M \) without given 3 in empty cases.

The annotations suggest comparing measured magnitudes with a theoretical or standard value, indicating deviations or corrections needed.
$\Delta(m-M)$ from empty universe

from Supernova Cosmology Project, Knop et al. 2003, Astrophysical Journal

two errors: measurement error (m)
accuracy of standard candle (M)
Universe expanding

Expansion is accelerating

Universe is being pushed ahead by repulsive gravity

"Dark Energy"

What is the composition of Dark Energy compared to matter?
energy/1 m³ \rightarrow \frac{E/c^2}{m^3}

- \Omega_m = 1/4
- \Omega_{DE} = 3 \times \Omega_m

Pie Chart of Universe

- Ordinary Matter
- Ordinary Energy
- Dark Matter
- Dark Energy

Einstein wanted a static Universe invented an additional term

A "Cosmological constant"

\rightarrow \text{static universe}
Hubble's expansion.

E: "And was my biggest mistake.”

FABLE: Einstein's biggest "mistake”

MORAL: "Heady ideas can turn up in other contexts.

\[\Omega^\gamma \approx 10^{-120} \] (particle physics)

\[\Omega^\gamma \approx 3/4 \]