Optimal Portfolio Diversification in General Case

• Drop assumption of equal weighting, independence and equal variance
• Put x_i dollars in ith asset, $I=1,..,n$, where the x_i sum to 1.
• Portfolio expected value
 $$r = \sum_{i=1}^{n} x_i E(\text{return}_i) = \sum_{i=1}^{n} x_i r_i$$
• Portfolio variance (two assets) =
 $$x_1^2 \text{var}(\text{return}_1) + (1-x_1)^2 \text{var}(\text{return}_2) + 2x_1(1-x_1)\text{cov}(\text{return}_1, \text{return}_2)$$
Efficient Portfolio Frontier with Two Assets

• Frontier expresses portfolio standard deviation in terms of portfolio expected return r rather than in terms of x_1.

•

\[x_1 = \frac{r - r_2}{r_1 - r_2} \]

\[\sigma^2 = \left(\frac{r - r_2}{r_1 - r_2} \right)^2 \sigma_1^2 + \left(\frac{r_1 - r}{r_1 - r_2} \right)^2 \sigma_2^2 + 2 \frac{(r - r_2)(r_1 - r)}{(r_1 - r_2)^2} \sigma_{12} \]
Portfolio Variance, Three Assets

- Portfolio variance =

\[x_1^2 \text{var}(return_1) + x_2^2 \text{var}(return_2) + x_3^2 \text{var}(return_3) \]
\[+ 2x_1x_2 \text{cov}(return_1, return_2) + 2x_1x_3 \text{cov}(return_1, return_3) \]
\[+ 2x_2x_3 \text{cov}(return_2, return_3) \]

(where \(\sum_{i=1}^{3} x_i = 1 \))
Efficient Portfolio Frontier

Efficient Portfolio Frontier With and Without Oil

- 28% Oil, 115% Stocks, -44% Bonds
- 21% Oil 79% Stock
- 15% Oil, 53% Stocks, 32% Bonds
- Tangency: Rf=5%, 12% Oil, 36% Stocks, 52% Bonds
- 50% Stocks, 50% Bonds
- 9% Oil, 27% Stocks, 64% Bonds
- 25 Stocks, 75% Bonds
- 100% Stocks
- 100% Bonds

Expected Annual Return

Standard Deviation of Annual Return

© Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Please consult the Open Yale Courses Terms of Use for limitations and further explanations on the application of the Creative Commons license.
Oil Reserves vs. Pension Fund Assets, 2006
Beta

- The CAPM implies that the expected return on the ith asset is determined from its beta.
- Beta (β_i) is the regression slope coefficient when the return on the ith asset is regressed on the return on the market.
- Fundamental equation of the CAPM:

$$r_i = r_f + \beta_i (r_m - r_f)$$
Survey of Individual Investors 1999

“Trying to time the market, to get out before it goes down and in before it goes up, is:

1. A smart thing to do; I can reasonably expect to be a success at it. 11%
2. Not a smart thing to do; I can’t reasonably expect to be a success at it. 83%
3. No opinion 5%
Survey of Individual Investors 1999

“Trying to pick individual stocks, for example, if and when Ford Motor stock will go up, or IBM stock will go up, is:

1. A smart thing to do; I can reasonably expect to be a success at it. 40%
2. Not a smart thing to do; I can’t reasonably expect to be a success at it. 51%
3. No opinion 8%
Survey of Individual Investors 1999

“Trying to pick mutual funds, trying to figure out which funds have experts who can themselves pick which stock will go up, is:

1. A smart thing to do; I can reasonably expect to be a success at it. 50%
2. Not a smart thing to do; I can’t reasonably expect to be a success at it. 27%
3. No opinion 23%