
Solutions to PS 10 Physics 201

1. For a screen very far away from the aperture, the rays from each of the N slits emerge

at approximately the same angle. Thus, from the diagram below, we see that the path

length difference between two adjacent slits is given by

∆� = L− L
�
= d sin θ (1)

and thus the phase difference is given by

φ = k∆� = kd sin θ (2)

Thus, if we take the phase of the top-most ray to be zero, the phase of the n-th ray is

φn = nφ = nkd sin θ (3)

Summing up the amplitude of all N rays, we find

A =

N−1�

n=0

ae
iφn (4)

= a

N−1�

n=0

�
e

iφ
�n

(5)

= a
1− e

iNφ

1− eiφ
(6)
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Where in the last line we used the formula for a finite geometric series. The first zero

of A occurs when the numerator vanishes (and the denominator is nonzero), which

occurs when

Nφ = 2π (7)

Nkd sin θ = 2π (8)

2π

λ
D sin θ = 2π (9)

D sin θ = λ (10)

As desired.

We can write our expression for A as a ratio of sin’s by factoring e
iNφ.2

out of the

numerator, and e
iφ/2

out of the denominator. Doing so gives

A = ae
i(N−1)φ

2
sin

Nφ
2

sin
φ
2

(11)

2. (a) For a double slit, we have that maxima occur when

d sin θ = nλ (12)

and minima when

d sin θ = (n +
1

2
)λ (13)

Thus, the first non-central maximum occurs at

d sin θ = λ (14)

sin θ =
λ

d
(15)

θ ≈ λ

d
= 0.006rad (16)

Similarly, the first minima occurs when

d sin θ =
λ

2
(17)

θ ≈ λ

2d
= 0.003rad (18)
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(b) Let L = 2m be the distance to the screen, and x the height of the first dark fringe

above the center. Then we have

tan θ ≈ θ =
x

L
(19)

x ≈ Lθ = 6mm (20)

An analogous calculation shows that for the first maximum,

x ≈ 12mm (21)

(c) From the above calculations, we see that in the small angle approximation, max-

ima and minima are equally spaced (in both angle and position on the screen).

Thus, for the second maximum, we must have

θ ≈ 0.012rad (22)

x ≈ 24mm (23)

and similarly for the second minimum,

θ ≈ 0.009rad (24)

x ≈ 18mm (25)

(d) Replacing changing our value of λ to 500nm is equivalent to multiplying our result

for x by 5/6. Thus, we have for the difference in location of the first maximum,

∆x = 12(1− 5

6
)mm = 2mm (26)

3. The difference in optical path length due to the presence of the material is given by

∆� = (n− 1)t (27)

Before the material is placed, the total difference in optical path length is 5λ, while

aferwards, it is
3λ
2 . Thus,

∆� = λ(5− 3

2
) (28)

(n− 1)t =
7λ

2
(29)

t =
7λ

2(n− 1)
= 3µm (30)
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4. For a diffraction grating with N lines per meter, we have maxima when

1

N
sin θ = mλ (31)

Thus, for the first order maxima we have

sin θ = Nλ (32)

θ ≈ 0.157rad (33)

similarly for the fourth order maxima we have

sin θ = 4Nλ (34)

θ = 0.674rad (35)

Note that 0.674 radians is a fairly large angle, so we have not used the small angle

approximation in the last step.

5. Since both sides of the film are bounded by air, there is no phase shift at the lower

boundary. Furthermore, normal incidence implies that all relevant angles are zero.

Thus constructive interference occurs when

2nt = (m +
1

2
)λ (36)

We get a minimum t when m = 0, and thus

t =
λ

4n
= 93.0nm (37)

6. The first minimum occurs when

d sin θ = λ (38)

which implies

θ = arcsin
600

2000
= 0.304rad (39)

The angular width is given by δ = 2θ, and thus

δ = 0.610rad (40)
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7. For the third order maximum of the grating to be at θ = π/6, we must have

1

N
sin

π

6
= 3λ (41)

1

2N
= 3λ (42)

N =
1

6λ
(43)

= 3333
1

cm
(44)

8. The final kinetic energy of the electrons is given by

E = eV (45)

and thus their momentum is

p =

√
2mE =

√
2meV (46)

and therefore they have a wavelength

λ =
h

p
=

h√
2meV

(47)

The first double slit minimum is given by the condition

d sin θ =
λ

2
(48)

and thus the angle of the first minimum is given by (in the small angle approximation)

θ =
λ

2d
=

h

2d
√

2meV
(49)

For a screen L meters away, we have the height w (note - we use w instead of h to

avoid confusion with Planck’s constant) of this minimum given by

sin θ ≈ tan θ =
h

2d
√

2meV
(50)

w

L
=

h

2d
√

2meV
(51)

w =
hL

2d
√

2meV
(52)

Solving for V , we find

V =
1

2me

�
hL

2wd

�2

(53)

Plugging in the numbers given, we find

V = 37.6MV (54)
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9.

λ =
h

p
=

hc�
E2 − (mc2)2

(55)

Since the rest mass energy of the proton is given by 938MeV , we see that the ratio

mc2

E is vanishingly small for E = 3.5TeV . Thus, we can Taylor expand our formula for

λ and keep terms only zeroth order in m, yielding

λ =
hc

E
= 3.54× 10

−19
m (56)

Note that since we ignored the mass term, this is the same wavelength light would

have at that energy.

10. Note that the image of the source lies a distance H below the mirror. Thus, we can

treat this as if it were a double slit setup, with d = 2H. However, because of the phase

shift of π at the mirror, we will get destructive interference at what would normally

be the double slit maxima. Thus, we have minima when

2H sin θ = nλ (57)

where θ is measured from the mirror. For the height h of the first minimum, this gives

λ = 2H sin θ ≈ 2H tan θ (58)

λ

2H
=

h

D
(59)

h =
Dλ

2H
(60)

= 50µm (61)

11. We have

E = h̄ω −W (62)

where E is the electron kinetic energy. The minimum ω = ω0 occurs when the kinetic

energy is zero, giving

ω0 =
W

h̄
= 6.08× 10

15 rad

s
(63)

At ω = 2ω0, we have

E = 2W −W = W (64)

Since E = mv
2
/2, we find the velocity of the electrons is

v =

�
2W

m
= 1.19× 10

6m

s
(65)
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12.

λT =
h

p
(66)

=
h√

2mE
(67)

=
h√

3mkT
(68)

at T = 300K, we find

λT = 6.23nm (69)

13. (a) From the picture shown, we see that the difference in path length ∆� between

the top and bottom rays is given by

∆� = 2d sin θ (70)

The condition for constructive interference is that ∆� = mλ, from which we

recover the Bragg condition

2d sin θ = mλ (71)

(b) Electrons with E = 54eV have a de Broglie wavelength

λ =
h√

2mE
= 0.167nm (72)

Plugging this into the Bragg formula with θ = 65
◦
, d = a and m = 1, we find

a = 0.92Å (73)


