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Solutions to Problem Set 1 Physics 201b January 13, 2010.

1. (i) To produce a sphere with 1
8 µC you need to first let the two spheres touch each

other so that the charges redistribute equally on the two spheres. Now each sphere has
a charge of 1

2 µC and grounding one of the spheres discharges it again. Repeating this
two more times leaves you with the two spheres charged with 1

8 µC each.

(ii) If you cannot ground anything you will need three initially discharged spheres to
get 1

8 µC. Every time you let the charged sphere touch a discharged sphere, its charge
reduces to half the value.

(iii) To get 5
16 µC, you simply need to let the sphere with 1

8 µC touch the sphere with
1
2 µC (the one that first touched the fully charged sphere). This will get you a charge
of 1

2 × (1
8 µC + 1

2 µC) = 5
16 µC.

2. See figure.

3. The symmetry of the problem tells us immediately that the force on the proton is zero.
For each electron that attracts the proton there is an electron on the opposite side
canceling out the force of the first. Removing any one electron has the effect that one
electron is without a pair and thus the resulting force on the proton (in the direction
of the electron) simply is

F =
e2

4πε0r2

= 2.3 × 10−28 N . (1)
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4. (i) Let
f(x) = (1 + x)p and x0 = 0. (2)

We then have
df

dx

∣

∣

∣

∣

∣

x0

= p(1 + x0)
p−1 = p (3)

d2f

dx2

∣

∣

∣

∣

∣

x0

= p(p − 1)(1 + x0)
p−2 = p(p − 1) (4)

d3f

dx3

∣

∣

∣

∣

∣

x0

= p(p − 1)(p − 2)(1 + x0)
p−3 = p(p − 1)(p − 2), (5)

and finally

f(x) = f(0) +
df

dx

∣

∣

∣

∣

∣

x=0

x +
1

2!

d2f

dx2

∣

∣

∣

∣

∣

x=0

x2 +
1

3!

d3f

dx3

∣

∣

∣

∣

∣

x=0

x3 + ...

=⇒ f(x) = 1 + px +
p(p − 1)x2

2!
+

p(p − 1)(p − 2)x3

3!
+ ... (6)

(ii) Let
g(x) = ln(1 + x) and x0 = 0. (7)

Then
dg

dx

∣

∣

∣

∣

∣

x0

=
1

1 + x0
= 1 (8)

d2g

dx2

∣

∣

∣

∣

∣

x0

=
−1

(1 + x0)2
= −1 (9)

d3g

dx3

∣

∣

∣

∣

∣

x0

=
2

(1 + x0)3
= 2 . (10)

We finally find

g(x) = g(0) +
dg

dx

∣

∣

∣

∣

∣

x=0

x +
1

2!

d2g

dx2

∣

∣

∣

∣

∣

x=0

x2 +
1

3!

d3g

dx3

∣

∣

∣

∣

∣

x=0

x3 + ...

=⇒ g(x) = x −
x2

2
+

x3

3
+ ... (11)

5. (1)Let’us think about the balance of the forces to the left particle. Noting the change
in the length of each spring is a/2, we get

Ftot = −k (−
a

2
) −

q2

4πε0(2a)2
= 0. (12)

Solving for k, we get

k =
q2

8πε0a3
. (13)
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(2)In the same way, noting that the change in the length of each spring is a/4, we get
the balance equation for the left particle.

Ftot = −k (
a

4
) +

q2

4πε0(
a
2)

2
= 0. (14)

Solving for k, we get

k =
4q2

πε0a3
. (15)

(3) By applying the result of the problem 4, and using the result from part (1), we get

Ftot = −k(−a/2 + x) −
1

4πε0

q2

(2a − x)2
(16)

= ka/2 − kx −
1

4πε0

q2

4a2

1

(1 − x
2a)2

(17)

= ka/2 − kx −
q2

16πε0a2
(1 + 2

x

2a
+ · · ·) (18)

= −(k +
q2

16πε0a3
)x (19)

≡ −keffx. (20)

where keff is the effective force constant in the presence of the electric force (we use

keff to avoid confusion with the electric constant ke). From the relation ω =
√

keff/m,
we get

ω =

√

(k +
q2

16πε0a3
)/m =

√

3q2

16mπε0a3
(21)

6. (i) The force of each unit charge q at the corners exerted on the charge −q in the center
is |F| = ke

q2

r2 , where r is the distance between the center charge and the corner charge

(here r =
√

2). As seen in the picture below, forces from charges at opposite corners
cancel each other, resulting in a zero net force.
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(ii) Let’s write out explicitly the force vectors for this case. As always, according
to Coulomb’s law, the force from the corner charge i pointing towards the center is
Fi = F r̂i where F = ke

−q2

r2 and r̂i is the unit vector pointing from the charge i towards
the center charge.

For convenience, let the origin be at the position of the center charge and let the corner
charges have coordinates (x, y, z). Then r̂i = 1

r (x i+yj+zk), where r =
√

x2 + y2 + z2.
So when we displace the center charge by an amout δ in the +z direction, then r̂i =
1
r (±1 i + ±1j + δk) and r =

√
2 + δ2 and the sign ± depends on which charge we

consider. From symmetry considerations we immediately see that the resulting force
will have a component in the z-direction only.

4
∑

i=1

Fi = 4 · ke
−q2

r3
δ k = 4 · ke

−q2

(2 + δ2)3/2
δ k

= 4 · ke
−q2

23/2
(1 − 3/4δ2 + ...)δ k

(23)

where for the last equality we have used the Taylor expansion found in problem 2.
Neglecting all terms of order 2 or higher in δ we get

F =
4

∑

i=1

Fi = −(
√

2 ke q2) δ k . (24)

So we finally find the spring constant k to be

k =
√

2 ke q2 . (25)

(iii) From classical mechanics we know that the angular frequency of a spring-mass

system is simply ω =
√

k
m , so here
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ω =

√√
2 ke q2

m
. (26)

(iv) To determine the speed with which the charge will cross the origin, we use energy
conservation:

Ekin = Epot

1

2
mv2 =

1

2
kz2 =

1

2

√
2 ke q2δ2. (27)

Thus

v =

√√
2 ke q2

m
δ = ω δ. (28)

(v) Using the same approach as in part (ii) we can write out the forces explicitly as:

F1 = ke
−q2

r3
1

· ((x + δ) i + yj) = ke
−q2

r3
1

· ((−1 − δ) i + j)

F2 = ke
−q2

r3
2

· ((1 − δ) i + j)

F3 = ke
−q2

r3
2

· ((1 − δ) i − j)

F4 = ke
−q2

r3
1

· ((−1 − δ) i − j), (29)

where r1 =
√

(x + δ)2 + y2 =
√

(1 + δ)2 + 1 and r2 =
√

(1 − δ)2 + 1.

Taylor expansion of 1
r3
1

and 1
r3
2

up to first order in δ gives:

1

r3
1

=
1

((1 + δ)2 + 1)3/2
≈

1

2
√

2
−

3

4
√

2
δ

1

r3
2

=
1

((1 − δ)2 + 1)3/2
≈

1

2
√

2
+

3

4
√

2
δ. (30)

As expected by symmetry, when summing up all four forces only a component in the
x-direction remains:

F =
4

∑

i=1

Fi = keq
2 · 2 ·

[

1 − δ

r3
2

+
−1 − δ

r3
1

]

i
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eqn.(30)
≈ keq

2 · 2 ·
[

(1 − δ)
( 1

2
√

2
+

3

4
√

2
δ
)

+ (−1 − δ)
( 1

2
√

2
−

3

4
√

2
δ
)

]

i

= keq
2
( 3√

2
δ −

2√
2
δ
)

i

= keq
2 1√

2
δ i. (31)

Thus we have established that a displacement in the positive x-direction will cause a
force also in the positive x-direction and the system is unstable. The corresponding
spring constant is

k = −keq
2 1√

2
= −

q2

4πε0

√
2

. (32)

7. The electric field at x of a rod extending from −a to +a which carries a charge Q
uniformely distributed on it is

Erod =
keQ

(x − a)(x + a)
=

keQ

x2 − a2
, (33)

where the field vector is pointing toward x.
The electric field at x of a charge Q located at +2a on the x-axis is

Epoint =
keQ

(2a − x)2
, (34)

where the field vector is pointing toward x.
The total field for a testcharge inbetween then is

E =
keQ

x2 − a2
−

keQ

(2a − x)2
. (35)

Setting E != 0:

=⇒ (2a − x)2 = x2 − a2

=⇒ −4xa + 4a2 = −a2

=⇒ 4xa = 5a2

=⇒ x =
5

4
a . (36)

8. The electric field of an infinite line charge is

E =
λ

2πRε0
(37)
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where R is the distance to the electron. The centripetal force is F = mv2

R . Equating
the centripetal and coulomb forces yields

m
v2

R
=

eλ

2πRε0

=⇒ v2 =
e/m

2πε0
λ

=⇒ v =

√

e/m

2πε0
λ

=⇒ v = 7.97 × 107 m

s
. (38)

9. First let us calculate the y-component of the electric field.

Ey = E · j = ke

∫

∞

y=0

dq

r2
(r̂ · j)

= ke

∫

∞

y=0

λdy

r2

(−y

r

)

= −λke

∫

∞

y=0

y

r3
dy = −λke

∫

∞

y=0

y

(a2 + y2)3/2
dy

=
−λke

a
. (39)

We could also explicitly calculate the x-component by integrating the appropriate
function. But it is much simpler to note that the x-component of the field of an
infinite rod is twice the x-component of the field of the semi-infinite rod. Thus

Ex =
1

2
· Ex,∞ =

λke

a
. (40)
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10. The problem is symmetric about x, thus there is no field component in the x-direction.
The field in the y-direction is:

Ey = E · j = −ke

∫ π

θ=0

dq

r2
(er · j)

= ke

∫ π

θ=0

λadθ

a2
(− sin(θ))

=
keλ

a

∫ π

θ=0
− sin(θ) dθ

=
keλ

a
( cos(π) − cos(0))

= −
2keλ

a
. (41)


