
Problem Set IX Solutions 
Fall 2006 Physics 200a 

 
1. Write the equation for a wave moving along +x with amplitude .4m, speed 6m/s and 

frequency 17Hz.  If these are waves on a string with mass per unit length µ = 
.02kg/m, what is the u, the energy per unit length?  What is the power being fed into 
the vibrating string? 

  
Equation (16-2) gives us the general equation for a moving wave: 

ψ(x,t) = A cos(2πx/λ + 2πft) 
We will take the – sign since we want a wave moving along the +x direction.  But, we 
were given the wave velocity and frequency, not wavelength, so we must use Equation 
(16-1): 

v = λf 
Solving this for λ and then substituting into the chosen form of Equation (16-2) gives: 

ψ(x,t) = A cos(2πxf/v - 2πft) 
⇒  ψ(x,t) = (0.4m) cos[2π(17Hz)x/(6m/s) - 2π(17Hz)t] 
⇒  ψ(x,t) = (0.4m) cos[(17π/3 m-1)x – (34π Hz)t] 
 
From the lecture notes, we know that the energy per unit length for a sinusoidal wave on 
a string is: 

u = ½µA2ω2 
This is given in angular frequency, but we only have the frequency.  Fortunately, 
Equation (15-7) reminds us: 

f = ω / 2π or 2πf = ω 
Which gives the final result that: 

u = 2π2µA2f2 
⇒ u = 2π2(.02kg/m)(0.4m)2(17Hz)2 ≈ 18.3 J/m 

 
The power that must be fed into the string varies with what part of wave being produced, 
but the average power is given by Equation (16-8): 

<P> = ½µω2A2v 
This is again given in angular frequency when we only have the frequency.  Again 
making use of Equation (15-7) lets us say that the average power is: 

<P> = ½µ(2πf)2A2v = 2π2µf2A2v 
⇒ <P> = 2π2(0.02kg/m)(17Hz)2(0.4m)2(6m/s) ≈ 109.5W 
 

2. The speed of sound in water and air is 1450m/s and 330m/s respectively.  Sound 
from an explosion on the surface of a lake first reaches me when my head is 
underwater and 5s later when my head is above the water.  How far away was the 
explosion? 

 
From equation (2-1) we know that t = D / v where t is time spent moving, D is the total 
distance moved and v is the velocity when moving.  From the problem we can construct 
the following two equations: 

(1) tair = D / vair 



(2) twater = D / vwater 
But we also know that tair = twater + ∆t where ∆t is 5s, the difference in travel times. So, 
we can rewrite our equations as: 

(1*) twater + ∆t = D / vair or twater = (D / vair) - ∆t 
(2*) twater  = D /vwater 

If we then combine the second form of (1*) and (2*) we get: 
(D / vair) – ∆t = D /vwater 

⇒ D•vwater - ∆t•vair•vwater = D•vair 

⇒ D•(vwater - vair) = ∆t•vair•vwater 

⇒ D = (∆t•vair•vwater) / (vwater - vair) 
Evaluating with the given numeric values gives: 
 D = (5s)(330m/s)(1450m/s) / (1450m/s - 330m/s) = 2136.16m ≈ 2140m  
 

 
3. A block of mass M sits on a frictionless inclined plane of angle α = π/4 as in Figure 

(1).  It is connected by a wire of linear mass density µ = .03kg/m that goes over a 
pulley that supports mass m.  Both masses are at rest.  If transverse waves travel at 
v = 80m/s in the wire find M and m, using symbols till the end.  Ignore the mass of 
the string in computing the tension on the string; use it just to find the velocity of 
waves. 

 
Let us begin solving this problem by drawing the free body diagrams for both masses. 

 



Since we know that both masses are at rest that means that the forces on each mass must 
balance.  Focusing our attention on the tension in the wire gives us these two equations 
for the magnitudes of the forces: 

T = mg 
T = Mg sin α 

From which we can easily solve for the masses: 
(1) m = T/g 

(2) M = T/(g sin α) 
The statement of the problem also gave us the wave velocity in the wire which we can 
make use of through Equation (16-7): 

v = (T/µ)½ 
which prompts us to solve for the tension. 

T = µv2 
If we combine this result with equations (1) and (2) we have our solutions for M and m: 

m = µv2/g 
⇒ m = (0.03kg/m)(80m/s)2 / (9.8m/s2) ≈ 19.6kg 

M = µv2/(g sin α) 
⇒ M = (0.03kg/m)(80m/s)2 / [(9.8m/s2)(sin π/4)] ≈ 27.7kg 
 
 
 

4. What is the ratio of sound intensities for which the difference is 1dB? 
 

Equation (17-4) defines the sound intensity level for us in terms of intensities like so: 
β = 10 log(I / Io) 

where Io is the reference level chosen as the threshold of hearing at 1kHz.  If we have two 
sounds and want them to have a sound intensity level difference of 1dB then we can 
write: 

β1 - β2 = 10 log(I1 / Io) – 10 log(I2 / Io) = 1 dB 
with the definition that β1 > β2.  It follows that: 

β1 - β2 = 10 log(I1 / Io) – 10 log(I2 / Io) 
= 10 [log(I1 / Io) – log(I2 / Io)] 

= 10 log ([I1 / Io]/[ I2 / Io]) 
=10 log (I1 / I2) = 1 dB 

But we want the ratio of intensities, so we can isolate the log term in the last equation and 
then exponentiate. 

10 log (I1 / I2) = 1 dB 
⇒ log (I1 / I2) = 0.1 dB 
⇒ 10log (I1 / I2) = 100.1 dB 

⇒ I1 / I2 = 100.1 ≈ 1.26 
 
 

5. A source of sound radiates uniformly in all directions.  Along a radial line from the 
source locate two points separated by 2m such that the intensity at the nearer point 
is 4dB above that of the more distant point. 

 



Equation (16-9) tells us that the dependence of intensity on total emitted power and radial 
distance to the source for spherical waves takes the form: 

I = P / (4πr2) 
Now, we want to consider only two points along the same radial line such that they are 
2m apart and that the intensity at the point closer to the sound source is 4dB higher than 
the other.  The first requirement can be satisified by the equation: 

(1)  r2 = r1 + 2m 
And the second we obtain by following the same logic as in Problem 4., resulting in: 

(2)  I1 / I2 = 100.4 dB  

Combining (2) with (16-9) yields: 
[P / (4 πr1

2)] / [P / (4 πr2
2)] = 100.4 

⇒ r2
2 / r1

2 = 100.4 

⇒ (r2 / r1)2 = 100.4 

⇒ r2 / r1 = (100.4)1/2 = 100.2 

⇒ r2 = 100.2 r1 
We can now take advantage of (1) to get a solution. 
⇒  r1 + 2m = 100.2 r1 

⇒  2m = 100.2 r1 - r1 = (100.2 - 1) r1 

⇒  r1 = 2m / (100.2 - 1) ≈ 3.42m 
 
So, the two points are located at 3.42m and 5.42m from the source. 
 
 

6. I place a massless speaker emitting sound at 600Hz on top of a mass connected to a 
spring.  I now set the mass-spring system in an oscillatory state, vibrating 
horizontally at 4Hz with amplitude A.  Given vsound = 330m/s, and that the difference 
between the highest and lowest frequencies I hear is 2Hz, what is A?  If I now turn 
on another identical sound source, what will be the largest beat frequency I will 
hear? 
 
Let us first consider the horizontally vibrating mass-spring system.  This type of system 
is an example of simple harmonic motion, and we can find the time dependent velocity 
from Equation (15-10) 

v(t) = -Aω sin (ωt) 
Since all we care about for this problem are the maximum and minimum velocities 
reached we don’t have to worry about the issue of when we define t=0.  All we need to do 
is note that the maximum and minimum values of sin x are + 1.  So we see that: 

vmax = Aω 
However the problem gave us the frequency, not the angular frequency, but Equation 
(15-7) reminds us: 

fosc = ω / 2π or 2πfosc = ω 
So we can simplify to: 

vmax = 2πAfosc 
That we can hear a difference in frequencies means that a Doppler shift is occurring.  The 
equation for a Doppler shift due to a moving source is given by Equation (17-10): 

f’ = f / (1 + u / vsound) 



where f’ is the observed frequency by the observer at rest, f is the frequency that the 
speaker is emitting, and u is the velocity that the speaker is moving at relative to the 
observer.  So, since we know what the difference is between the highest and lowest 
frequencies heard, we can write: 

f’high – f’low = (f / (1 -  vmax/ vsound)) – (f / (1 + vmax / vsound)) = 2 Hz 
⇒ f• { (1 + vmax / vsound) - (1 -  vmax/ vsound)} = (2 Hz)• (1 + vmax / vsound)• (1 -  vmax/ vsound) 

⇒ f• (2vmax / vsound) = (2 Hz)• { 1 - (vmax / vsound)2} 
⇒ (vmax / vsound)2 + (f / 1Hz)• (vmax / vsound) - 1 = 0 
If we introduce the change of variables x = vmax / vsound and let f now be unit-less, we get 
the equation: 

x2 + fx -1 = 0 
Which has only one positive solution: 

x = ½(f2 + 4)½ - f/2 
So now we know that: 

vmax/ vsound = ½(f2 + 4)½ - f/2 
⇒2πAfosc = (vsound/2) • {(f2 + 4)½ - f} 
⇒Α = vsound• {(f2 + 4)½ - f} / (4πfosc)= (330m/s){(6002+4)½ - 600} / (4π• 4Hz) ≈ 0.022m 
 
If you now turn on another source of sound you will observer a beat pattern that has a 
frequency equal to the magnitude of the difference between the two sources.  The highest 
and lowest frequencies generated by the moving source are: 
f’high = f / (1 -  vmax/ vsound) = f / (1 -  2πAfosc / vsound)  

= 600Hz / (1 – 2π(0.022m)(4Hz)/330 m/s) ≈ 601 Hz 
f’low = f / (1 + vmax / vsound) = f / (1 + 2πAfosc / vsound) 

= 600Hz / (1 + 2π(0.022m)(4Hz)/330 m/s) ≈ 599 Hz 
 
So, once the new 600Hz source is turned on the largest beat frequency that you can hear 
is ~1Hz. 
 
 

7. A mass M hangs vertically at the end of a cable of mass m and length L.  
(i) How long will a transverse pulse take to travel from bottom to top if you ignore 
m, the cable mass? 
(ii) Now repeat, including m and remembering that the velocity of the signal varies 
with the distance from the bottom end.  Show that the answer reduces to part (i) if 
you set m=0. 
 
(i) The way in which we ignore the cable mass is to assume that the tension in the cable is 
constant and due only to the mass hanging at the end. Thus the tension must exactly 
cancel the force of gravity on the mass and we are left with: 

T = Mg 
To find the velocity with which the wave will travel we can use Equation (16-7): 

v = (T/µ)½ 

where µ is the linear mass density of the cable; here µ = m/L.  From equation (2-1) we 
know that t = L / v.  Combining these equations gives: 

t = L / [Mg /(m/L)]½ = (mL / Mg)½ 



 
(ii) This time we won’t ignore the cable’s mass when calculating the tension.  At any 
given point along the cable the tension will have to balance both the mass at the end of 
the cable and any mass from the portion of the cable below it.  So we should say that: 

T = (M + xm/L)g 
Where x is the position along the cable setting x=0 at the point that the mass M is 
connected.  Again making use of Equation (16-7) we get that: 

v = [(M + xm/L)g / µ] ½ 
(We won’t immediately write µ in terms of m and L because that would confuse things a 
bit when we try to show that part (i) is a limiting case for this solution.) We can see here 
that the velocity is explicitly dependent on the position and so the simple method used in 
part (i) won’t work.  Instead we make use of the fact that v = dx/dt and construct a 
differential equation. 

dx/dt = [(M + xm/L)g / µ] ½ 
x(0) = 0 

The initial condition comes from the fact that the pulse is traveling from the bottom to the 
top of the cable.  This differential equation can be solved via a separation of variables as 
follows: 

dx/dt = [(M + xm/L)g / µ] ½ 
⇒ (M + xm/L)-½dx = (g / µ) ½ dt 
⇒ ∫ (M + xm/L)-½dx = ∫ (g / µ) ½ dt 
⇒ (2L/m)(M + xm/L) ½ = t• (g / µ) ½ + C * 
⇒ (M + xm/L) ½ = t• (m/2L)(g / µ) ½ + mC/(2L) 
⇒ M + xm/L = m2gt2/(4L2µ) + m2tC(g/µ) ½/(2L2) + m2C2/(4L2) 
⇒ x = mgt2/(4Lµ) + t• mC(g/µ) ½/(2L) + mC2/(4L) – LM/m 
(* C is the overall constant from the two integrations.) 
 
To remove the constant of integration we put the initial condition that x(0) = 0 to use. 
⇒ 0 = mC2/(4L) – LM/m 
⇒ C2 = 4L2M/m2 
⇒ C = +2LM ½/m 
 
⇒ x = mgt2/(4L µ) + t• (Mg/µ) ½ 
 
Here we can kill two birds with one stone.  We need to show that in the limit that m=0 
this solution is the same as in part (i) and we need to choose which of the two solutions is 
correct.  First let us take the proper limit, removing the first term and look at the 
condition that the wave is done traveling, i.e. x=L.  This leaves: 

L = + t• (Mg/µ) ½ 
Solving for t leaves us with: 

t = + (L2µ/Mg) ½  
We can now substitute in µ = m/L to arrive at: 

t = + (mL / Mg)½ 
This shows that we get the correct answer in the m=0 limit.  Additionally, we now know 
that only the + solution is of interest, which looking back is obvious since only that 
solution guarantees positive values for x for any positive value of t. 



Going back to the full solution for x and making the subsitituions that x=L and µ = m/L 
we get the following quadratic equation for x: 

L = gt2/4 + t• (MgL/m)½  
Which has only one positive solution, namely: 

t = 2{[L(m+M) / mg]½ - (ML / mg)½} 
 

8. Two speakers emitting sound at 550Hz are 1.5m apart.  The first destructive 
interference takes place 4m to the right and 0.8m above the line of symmetry, as in 
Figure (2).  What is the velocity of sound?  Do this using the Pythagoras theorem to 
calculate distances exactly and compare to the small-angle approximation d sin θ  = 
(n + ½ ) λ. 

 
To make things easier to follow let’s draw the figure a little closer to scale and give all of 
the relevant distances in the problems names as in the modified version of Figure (2).  
We are told that Point P is the location of the first point of destructive interference.  
Destructive interference occurs whenever the sound waves from the two speakers are 
180o out of phase.  This first occurs when the path length difference is one half of a 
wavelength.  First we write out the path lengths P1 and P2 in terms of known distances: 

P1 = [(d/2 - x)2 + L2]½ 
P2 = [(d/2 + x)2 + L2]½ 

(It is worth noting that the original drawing in the problem set is not to scale and point P 
is actually “above” the top speaker.)  So the condition of the first destructive interference 
is: 

P2 – P1 = λ/2 
However, we want the velocity of the sound, not the wavelength, so we will use Equation 
(16-1): 

v = λf 
This will allow us to write out an expression for the velocity of sound only in terms of 
known quantities. 

v = 2f• ( P2 - P1) = 2f• {[( d/2 + x)2 + L2]½ - [(d/2 - x)2 + L2]½} 
⇒ v = 2(550Hz){[(½•1.5m + 0.8m)2 + (4m)2]½ - [(½•1.5m - 0.8m)2 + (4m)2]½}      

≈ 318.45m/s 
 
If we were to solve this with the small angle formula: 

d sin θ  = (n + ½ ) λ 
for the first destructive interference (n=0) we should again make use of Equation (16-1) 
and solve for v getting: 

v = 2fd sin θ 



But from simple geometric arguments we see that: 
sin θ = x/(L2 + x2) ½ = [1+(L/x)2]-½ 

⇒ v = 2fd• [1+(L/x)2]-½ 
⇒ v = 2(550Hz)(1.5m)[1 + (4m / 0.8m)2]-½ ≈ 323.59m/s 
So the small angle approximation gives an answer that differs by only about 5.14m/s or 
about 1.5% from the exact answer. 
 
 

9. The ear canal is about 3cm long and can be viewed as a tube open at one end and 
closed at the other.  Relate this to the fact that we seem to hear best at around 
3000Hz. 

  
Figure 17-16 has a good visualization of a tube with one open end.  The first image of 17-
16(a) is the first resonant mode in this set up.  That is, a node at the closed end and an 
anti-node at the open end.  Just as with the string (see Figure 17-13) this means that the 
length of the tube must be one quarter of a wavelength.  We will take the speed of sound 
to be 330 m/s as was given in Problem 6.  Equation (16-1) gives us: 

v = λf 
So if we solve for f we should get the first resonant frequency in the ear. 

f = v/λ = v/4l 
f = (330m/s)/(4• 0.03m) = 2750Hz ≈ 3000Hz 

Unsurprisingly, we seem to hear best around the resonant frequency of our ears. 
 

 
10. Longitudinal waves on a metal rod travel at 3450m/s.  Find two of the lowest 

standing wave frequencies on a rod of length 2m clamped at one end and free at the 
other.  Draw figures.  Repeat if rod is clamped at both ends. 

   
 Starting with the lowest standing wave frequency for the rod clamped on one end, we 

first draw a picture.  Since one end is fixed it must be a node of the wave, and the open 
end must be an antinode.  For the lowest standing wave frequency we want no other 
nodes or antinodes.  Drawing inspiration from Figure 17-13: 

 
To find the frequency of this standing wave, we use Equation (16-1): 

v = λf 
From our forced locations of nodes and antinodes in the drawing we also know that: 

L = λ/4 or λ =4L 
Substituting and solving for f we conclude that the frequency of the standing wave is: 

f = v/(4L) = (3450m/s) / (4• 2m) = 431.25Hz 



 
The next lowest frequency standing wave must still have a node at the fixed end and an 
antinode at the open end.  To make it distinct from the last wave and still fit this 
constraint we must add an internal antinode and node: 

 
Counting the number of nodes and antinodes in the drawing we see that here: 

L = 3λ/4 or λ =4L/3 
Substituting and solving for f we conclude that the frequency of the standing wave is: 

f = 3v/(4L) = (3• 3450m/s) / (4• 2m) = 1293.75Hz 
 

For the case that the rod is fixed at both ends, the wave must have a node at both ends.  
To avoid the trivial case of no wave we put an antinode in the middle to get: 

 
This is the rather clearly half of a wave so that we see: 

L = λ/2 or λ =2L 
Substituting and solving for f we conclude that the frequency of the standing wave is: 

f = v/(2L) = ( 3450m/s) / (2• 2m) = 862.5Hz 
 

The next lowest frequency standing wave when both ends are clamped must still have 
nodes at both ends.  The smallest change that we make to the wave to keep this condition 
is adding an extra node and antinode into the center: 

 
We can see that this is a full wave, so we get: 

L = λ 
Substituting and solving for f we conclude that the frequency of the standing wave is: 



f = v/(L) = ( 3450m/s) / (2m) = 1725Hz 
 

 
11. How far apart are the nodes on a string 80cm long vibrating at 1600Hz assuming a 

wave velocity on the string of 320m/s? 
 
Since we know both the wave velocity and the frequency, let’s use Equation (16-1) to 
find the wavelength: 

v = λf 
⇒ λ = v/f = (320m/s)/(1600Hz) = 0.2m = 20cm 
 
Since we know that nodes must be spaced every half wavelength (including the ends of 
our string), we should have 8 nodes on the string spaced every 10cm. 


