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I will discuss here only what was left out near the end of the lecture of November 6
We were considering the solution to the driven oscillator

m
d2x

dt2
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dt
+ kx = F0 cos(ωt)
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√
k

m

First note that even if F0 = 0, there is a solution. (In class I referred to F0 as simply
F .) For the case γ < 2ω0, which we will focus on, it is

xc(t) = Ce−
γt
2 cos(ω′t− φ0) (1)

where
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√
ω2
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γ
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)2

γ =
b

m
(2)

and the subscript c stands for complimentary solution, the solution with no driving force.
I have referred to the phase as φ0 since another phase φ will enter shortly. The parameters
C and φ0 are found by demanding that the initial position and velocity, x(0) and v(0),
have some prescribed values at t = 0.

Now consider the driven problem

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos(ωt) (3)

which we rewrite as

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
F0

m
cos(ωt). (4)

Now introduce another problem where the driving force is F0 sin(ωt) and the solution is
y(t):

d2y

dt2
+ γ

dy

dt
+ ω2

0y =
F0

m
sin(ωt) (5)

Now if we form

z(t) = x(t) + i y(t) (6)

by adding the first equation 4 to i times the second, 5, we find

d2z

dt2
+ γ

dz

dt
+ ω2

0z =
F0

m
eiωt. (7)

Our plan is to solve this equation for z and take the real part, which is our x(t).



The nice thing about z is that we can guess a solution

z(t) = z0 expiωt (8)

where z0 is a constant (in time). Feeding in this guess (and remembering that every
differentiation just brings down an iω, we find

(−ω2 + iωγ + ω2
0)z0 expiωt =

F0

m
expiωt (9)

Cancelling the eiωt (which is never zero) we find that z0 is fully determined by the above
to be

z0 =
F0/m

(−ω2 + iωγ + ω2
0)
≡ F0/m

I(ω)
(10)

where the impedance I(ω) is

I(ω) = (−ω2 + iωγ + ω2
0). (11)

Let us write I in polar form

I(ω) = |I|eiφ (12)

where

|I| =
√

(−ω2 + ω2
0)

2 + (ω2γ2) tan φ =
ωγ

(−ω2 + ω2
0)

(13)

This means

z0 =
F0

m|I|eiφ
(14)

and that

z(t) =
F0

m|I|e
i(ωt−φ) (15)

and finally

x(t) =
F0

m|I| cos(ωt− φ) ≡ x0 cos(ωt− φ) (16)

(There is one more point about this answer I will return to shortly.)
Thus the driven oscillator vibrates at the frequency of the driving force, lags in phase

by φ and has an amplitude F0

m|I| . Both the amplitude and phase are frequency dependent.

The amplitude x0 is largest where |I| is smallest:

x0 =
F0/m√

(−ω2 + ω2
0)

2 + (ω2γ2)
(17)

If γ = 0, this clearly occurs at ω = ω0. At this point x0, the amplitude of vibrations
diverges. This is however an un-physical case since there is always some friction or γ.
In the presence of nonzero γ, the maximum in x0 occurs near ω = ω0. This is called



resonance and is more pronounced, the smaller the value of γ. Note that at ω = 0,
x0 = (F0/mω2

0) = F0/k which makes sense. The function then rises, peaks near ω0 and
vanishes as ω →∞. See the book for some graphs, for different values of friction.

Once we have x(t) we can take derivatives and get the answer of the velocity. The
amplitude of velocity oscillations will not peak where x0 does, though the two points will
be close if γ is small.

Now for what is lacking in Eq. 16. Note it has no free parameters: both x0 (the
amplitude ) and φ (the phase) are determined by m, γ, ω0 and ω. How then do we arrange
to have x(0) and v(0) equal to some arbitrary initial conditions? The answer is that to
the x(t) in Eqn.(16), which we will henceforth refer to as the particular solution xp(t) we
can always add the complimentary function xc(t) from Eqn. (1) to get the answer

x(t) = xp(t) + xc(t) (18)

=
F0

m|I| cos(ωt− φ) ≡ x0 cos(ωt− φ) + Ce−
γt
2 cos(ω′t− φ0) (19)
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Adding xc will not affect the fact that Eqn (4) is satisfied since

d2xc

dt2
+ γ

dxc

dt
+ ω2

0xc = 0. (21)

Thus x = xp +xc obeys the requisite equation and has the two free parameters that allow
us to choose our initial position and velocity at will.

Note however that due to the exponentially falling factor e−
γt
2 in xc, it will die down

after some time. Thus xc is called the transient solution and xp, which goes on and on
the steady-state solution. We will focus on the steady-state part from now on.

Let us admire some fine points. By using complex numbers we have managed to convert
a differential equation Eq. (4) into an algebraic equation, Eq. (9). Next, note that the the
response xp(t) is obtained from the cause F0 cos ωt by (i) dividing by |I| and (ii) changing
the phase by φ. This cannot be readily done in the world of real variables. However once
problem is cast in terms of a complex force F0e

iωt and its complex response, z = z0 eiωt,
the two are related by

z0 =
F0

mI(ω)
(22)

and division by a single complex number I = |I|eiφ re-scales and shift the (amplitude of
the ) applied force to give the (amplitude of the ) response.

For those of you who want the bottom line here it is. The driven oscillator
has a complete solution given by

x(t) = xp(t) + xc(t) =
F0

m|I| cos(ωt− φ) ≡ x0 cos(ωt− φ) + Ce−
γt
2 cos(ω′t− φ0)
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√
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|I| =
√

(−ω2 + ω2
0)

2 + (ω2γ2)

tan φ =
ωγ

ω2
0 − ω2

C and φ0 are free parameters chosen to fit initial conditions


