Lecture 23: Options Markets

Economics 252, Spring 2008 Prof. Robert Shiller, Yale University

© Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Clease course the Creative Commons of License and Explore and Explore the course are the license.

Exercise Price = 20

Stock Price

Open Yale courses

Exercise Price = 20

Stock Price

Open Yale courses

Put-Call Parity Relation

- Put option price call option price = present value of strike price + present value of dividends – price of stock
- For European options, this formula must hold (up to small deviations due to transactions costs), otherwise there would be arbitrage profit opportunities

Put Call Parity Relation Derivation

Open Yale courses

Exercise Price = 20, r=5%, T=1,sigma=.3

Binomial Option Pricing

- S = current stock price
- *u* = 1+fraction of change in stock price if price goes up
- d = 1+fraction of change in stock price if price goes down
- *r* = risk-free interest rate

Binomial Option Pricing, Cont.

- C =current price of call option
- C_u = value of call next period if price is up
- C_d = value of call next period if price is down
- E =strike price of option
- *H* = hedge ratio, number of shares purchased per call sold

© Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Clease course the Creative Commons of License and Explore and

Hedging by writing calls

- Investor writes one call and buys *H* shares of underlying stock
- If price goes up, will be worth $uHS-C_u$
- If price goes down, worth $dHS-C_d$
- For what *H* are these two the same?

$$H = \frac{C_u - C_d}{(u - d)S}$$

© Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Clease course the Creative Commons of License and Explore and

Binomial Option Pricing Formula

- One invested *HS-C* to achieve riskless return, hence the return must equal (1+r) (*HS-C*)
- $(1+r)(HS-C)=uHS-C_u=dHS-C_d$
- Subst for *H*, then solve for *C*

$$C = (\frac{1+r-d}{u-d})(\frac{C_u}{1+r}) + (\frac{u-1-r}{u-d})(\frac{C_d}{1+r})$$

Black-Scholes Option Pricing

Call *T* the time to exercise, σ^2 the variance of oneperiod price change (as fraction) and N(x) the standard cumulative normal distribution function (sigmoid curve, integral of normal bell-shaped curve) =normdist(x,0,1,1) Excel (x, mean,standard_dev, 0 for density, 1 for cum.)

Black-Scholes Formula

$$C = SN(d_1) - EN(d_2)$$

where

$$d_{1} = \frac{\ln(\frac{S}{E}) + rT + \sigma^{2}T/2}{\sigma \sqrt{T}}$$
$$d_{2} = \frac{\ln(\frac{S}{E}) + rT - \sigma^{2}T/2}{\sigma \sqrt{T}}$$

Actual S&P500 Volatility Monthly July1871- April 2008

Open Yale courses

Implied and Actual Volatility Monthly Jan 1986-April 2008

Open Yale courses