Lecture 10: Debt Markets and Term Structure

Economics 252, Spring 2008 Prof. Robert Shiller, Yale University

Historical Securities Search Results

Treasury Bills

Auction Dates: From: Feb 8, 2008 **To:** Feb 15, 2008

Security Terms: All

Sorted By: Auction Date in Descending order

Security Term 60-DAY	Auction Date 02-14-2008	Issue Date 02-15-2008	Maturity Date 04-15-2008	Parte % 2.510	Investment Rate % 2.563	Price Per \$100 99.581667	CUSIP 912795UD1
63-DAY	02-13-2008	02-14-2008	04-17-2008	2.440	2.491	99.573000	912795D81
4-WEEK	02-12-2008	02-14-2008	03-13-2008	2.500	2.547	99.805556	912795D32
26-WEEK	02-11-2008	02-14-2008	08-14-2008	2.080	2.137	98.948444	912795F97
13-WEEK	02-11-2008	02-14-2008	05-15-2008	2.250	2.301	99.431250	912795E49

Open Yale courses

Discount Bonds Pricing

Term T, Yield to Maturity (YTM) r

$$P_t = \frac{1}{\left(1 + r\right)^T}$$

$$P_{t} = \frac{1}{(1+r/2)^{2T}}$$

Open Yale courses

Compound Interest

- If annual rate is r, compounding once per year, balance = $(1+r)^t$ after t years.
- If compounded twice per year, balance is $(1 + r/2)^{2t}$ after t years.
- If compounded n times per year, balance is $(1+r/n)^{nt}$ after t years.
- Continuous compounding, balance is e^{rt} .

Price & Yield on T-Bills

- For buyer, Price = 100-Discount
- Discount = Asked*(Days to Maturity/360). (Same as formula on page 295 of Fabozzi, where D=Discount, F=100, Y=Asked/100, t=Days)
- Yield = (Discount/Price)(365/(Days to Maturity)). (Unless maturity > 6 months, in which case quadratic formula using semi-annual compounding is required.)

Conventional Bonds Carry Coupons

- Conventional Bond Issued at par (100), coupons every six months.
- Term is time to maturity.

$$P_{t} = c\left(\frac{1}{r} - \frac{1}{(1+r)^{T}} \frac{1}{r}\right) + \frac{100}{(1+r)^{T}}$$

$$P_{t} = \frac{c}{2} \left(\frac{1}{r/2} - \frac{1}{(1+r/2)^{2T}} \frac{1}{r/2} \right) + \frac{100}{(1+r/2)^{2T}}$$

Historical Securities Search Results

Treasury Notes

Auction Dates: From: Jan 1, 2008 To: Feb 15, 2008

Security Terms: All

Sorted By: Auction Date in Descending order

Security Term	Auction Date	Issue Date	Maturity Date	Interest Rate %	Yield %	Price Per \$100	CUSIP	
10-YEAR	02-06-2008	02-15-2008	02-15-2018	3,500	3.620	99.000685	912828HR4	
5-YEAR	01-29-2008	01-31-2008	01-31-2013	2.875	2.909	99.842844	912828HQ6	
2-YEAR	01-28-2008	01-31-2008	01-31-2010	2.125	2.237	99.782126	912828HP8	
10-YEAR	01-10-2008	01-15-2008	01-15-2018	1.625	1.655	99.724557	912828HN3	

Open Yale courses

Historical Securities Search Results

Treasury Bonds

Auction Dates: From: Jan 1, 2008 To: Feb 15, 2008

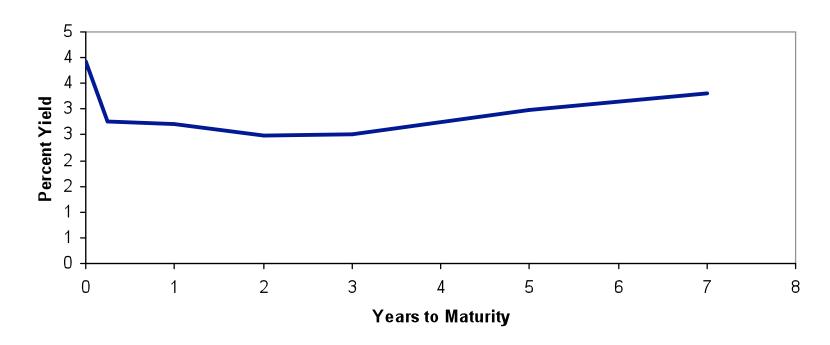
Security Terms: All

Sorted By: Auction Date in Descending order

Security Term	Auction Date	Issue Date	Maturity Date	Interest Rate %	Yield %	Price Per \$100	CUSIP
30-YEAR	02-07-2008	02-15-2008	02-15-2038	4.375	4.449	98.780998	912810PW2
20-YEAR	01-24-2008	01-31-2008	01-15-2028	1.750	1.807	99.351033	912810PV4

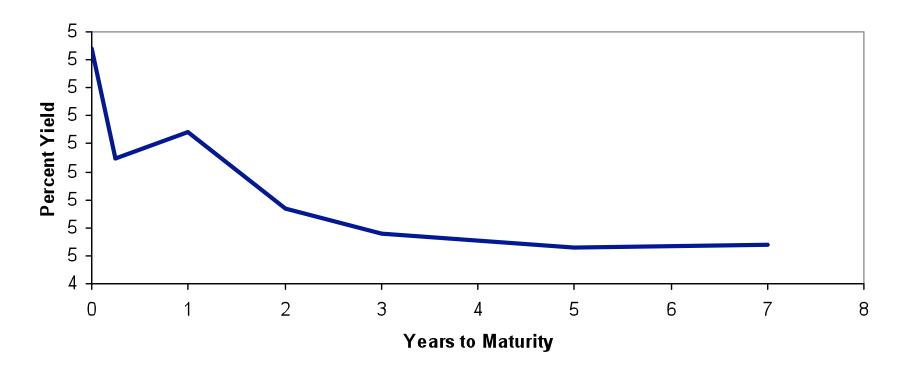
Open Yale courses

Forward Rates

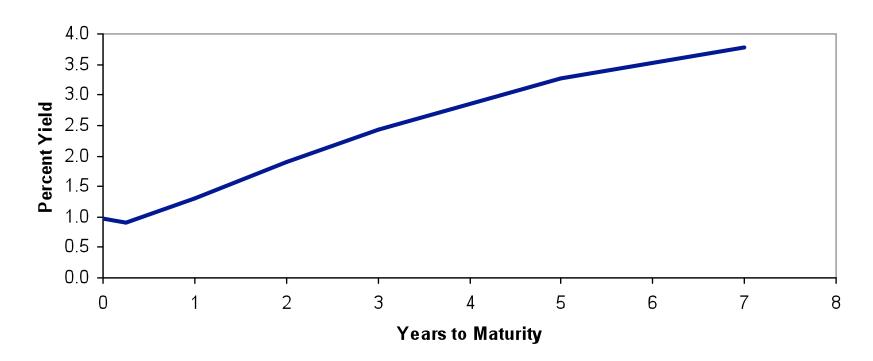

J. R. Hicks Value and Capital 1939

$$(1+r_2)^2 = (1+r_1)(1+f_2)$$

$$(1+r_k)^k = (1+r_{k-1})^{k-1}(1+f_k)$$


Open Yale courses

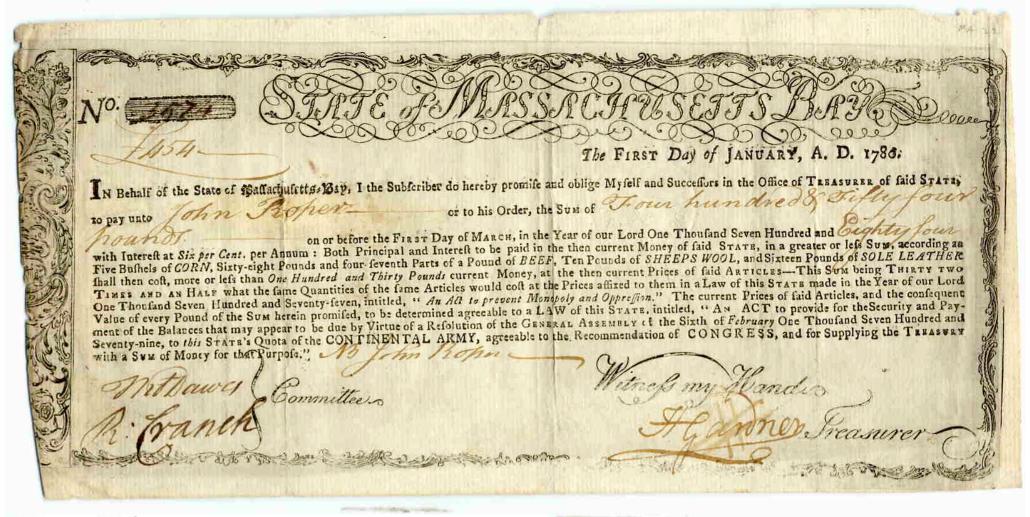
Jan 2008 Term Structure


Open Yale courses

Dec 2006 Term Structure

Open Yale courses

Dec 2003 Term Structure


Open Yale courses

Inflation and Interest Rates

- Nominal rate quoted in dollars, real rate quoted market baskets
- Nominal rate usually greater than real rate.

$$(1 + r_{money}) = (1 + r_{real})(1 + i)$$

$$r_{money} \cong r_{real} + i$$

Open Yale courses