Econ 252 - Financial Markets

 Spring 2011

 Spring 2011
 Professor Robert Shiller

Problem Set 1 - Solution

Question 1

(a) Denote the winnings from a single lottery ticket by L.

A single lottery ticket pays $\$ 1,000,000$ with probability $1 / 1,000,000$, it pays $\$ 10,000$ with probability $1 / 10,000$, and it pays $\$ 1$ with probability $1 / 100$. Therefore, the expected value of winnings from a single lottery ticket equals

$$
E[L]=\frac{1}{1,000,000} \cdot 1,000,000+\frac{1}{10,000} \cdot 10,000+\frac{1}{100} \cdot 1=2.01 .
$$

(b) The variance of the winnings from a single lottery ticket equals

$$
\begin{aligned}
& \operatorname{Var}(L)=E\left[L^{2}\right]-E[L]^{2} \\
& =\frac{1}{1,000,000} \cdot(1,000,000)^{2}+\frac{1}{10,000} \cdot(10,000)^{2}+\frac{1}{100} \cdot(1)^{2}-(2.01)^{2} \approx 1,009,995.97 .
\end{aligned}
$$

(c) The following argument is based on the fact that a potential buyer of a lottery ticket is risk-averse or is risk-neutral.

If the ticket costs $\$ 4$, its cost is higher than the expected winnings. In this case, a risk-averse or risk-neutral person would not buy the ticket.

If the ticket costs $\$ 1$, its cost is lower than the expected earnings. If someone is risk-neutral or only very weakly risk-averse, this person should buy the ticket. If, however, the person is strongly risk-averse, this person should not buy the ticket.

Question 2

(a) Denote the U.S. bond by US. It pays $\$ 100$ with probability 1 . Therefore,

$$
E[U S]=1 \cdot 100=100
$$

Denote the NY bond by NY. It pays $\$ 100$ with probability $.3+.15+.05=.5$, pays $\$ 80$ with probability $.1+.1+.1=.3$, and pays $\$ 20$ with probability $.05+.05+.1=.2$. Therefore,

$$
E[N Y]=.5 \cdot 100+.3 \cdot 80+.2 \cdot 20=78
$$

Denote the CA bond by CA. It pays $\$ 100$ with probability $.3+.1+.05=.45$, pays $\$ 80$ with probability $.15+.1+.05=.3$, and pays $\$ 20$ with probability $.05+.1+.1=.25$. Therefore,

$$
E[C A]=.45 \cdot 100+.3 \cdot 80+.25 \cdot 20=74
$$

(b) As the U.S. bond pays a fixed amount for sure, its variance equals $\$ 0$.

The variance of the NY bond equals

$$
\operatorname{Var}(N Y)=E\left[N Y^{2}\right]-E[N Y]^{2}=.5 \cdot(100)^{2}+.3 \cdot(80)^{2}+.2 \cdot(20)^{2}-(78)^{2}=916 .
$$

The variance of the CA bond equals

$$
\operatorname{Var}(C A)=E\left[C A^{2}\right]-E[C A]^{2}=.45 \cdot(100)^{2}+.3 \cdot(80)^{2}+.25 \cdot(20)^{2}-(74)^{2}=1,044
$$

(c) As the variance for the U.S. bond is zero, its standard deviation is also equal to 0 . The standard deviation of the NY bond equals

$$
\operatorname{Std}(N Y)=\sqrt{\operatorname{Var}(N Y)}=\sqrt{916} \approx 30.27 .
$$

The standard deviation of the CA bond equals

$$
\operatorname{Std}(C A)=\sqrt{\operatorname{Var}(C A)}=\sqrt{1,044} \approx 32.31 .
$$

(d) The covariance of the NY bond and the CA bond equals

$$
\begin{aligned}
& \operatorname{Cov}(N Y, C A)=E[N Y \cdot C A]-E[N Y] E[C A] \\
& =.3 \cdot 100 \cdot 100+.15 \cdot 100 \cdot 80+.05 \cdot 100 \cdot 20 \\
& +.1 \cdot 80 \cdot 100+.1 \cdot 80 \cdot 80+.1 \cdot 80 \cdot 20 \\
& +.05 \cdot 20 \cdot 100+.05 \cdot 20 \cdot 80+.1 \cdot 20 \cdot 20-78 \cdot 74 \\
& =348 .
\end{aligned}
$$

(e) The correlation of the NY bond and the CA bond equals

$$
\operatorname{Corr}(N Y, C A)=\frac{\operatorname{Cov}(N Y, C A)}{\operatorname{Std}(N Y) \cdot \operatorname{Std}(C A)}=\frac{348}{30.27 \cdot 32.31} \approx 0.3558 .
$$

(f) The random variable of interest is $1 / 3 \cdot \mathrm{~A}+1 / 3 \cdot \mathrm{~B}+1 / 3 \cdot \mathrm{C}$.

The expected value of this random variable is

$$
\begin{aligned}
& E[1 / 3 \cdot U S+1 / 3 \cdot N Y+1 / 3 \cdot C A]=1 / 3 \cdot E[U S]+1 / 3 \cdot E[N Y]+1 / 3 \cdot E[C A] \\
& =1 / 3 \cdot 100+1 / 3 \cdot 78+1 / 3 \cdot 74=84 .
\end{aligned}
$$

In order to compute the variance of $1 / 3 \cdot A+1 / 3 \cdot B+1 / 3 \cdot C$, observe that

$$
\operatorname{Var}(1 / 3 \cdot U S+1 / 3 \cdot N Y+1 / 3 \cdot C A)=\operatorname{Var}(1 / 3 \cdot N Y+1 / 3 \cdot C A),
$$

as .5 A is a constant. It follows that

$$
\begin{aligned}
& \operatorname{Var}(1 / 3 \cdot U S+1 / 3 \cdot N Y+1 / 3 \cdot C A)=\operatorname{Var}(1 / 3 \cdot N Y+1 / 3 \cdot C A) \\
& =\operatorname{Var}(1 / 3 \cdot N Y)+\operatorname{Var}(1 / 3 \cdot C A)+2 \cdot \operatorname{Cov}(1 / 3 \cdot N Y, 1 / 3 \cdot C A) \\
& =(1 / 3)^{2} \operatorname{Var}(N Y)+(1 / 3)^{2} \operatorname{Var}(C)+2 \cdot 1 / 3 \cdot 1 / 3 \cdot \operatorname{Cov}(B, C) \\
& =(1 / 3)^{2} \cdot 916+(.25)^{2} \cdot 1,044+2 \cdot 1 / 3 \cdot 1 / 3 \cdot 348 \approx 295.11 .
\end{aligned}
$$

Question 3

(a) $w=0.75$:

$$
\begin{aligned}
& E\left[r_{P}\right]=E\left[0.75 \cdot r_{A}+0.25 \cdot r_{B}\right]=0.75 \cdot E\left[r_{A}\right]+0.25 \cdot E\left[r_{B}\right] \\
& =0.75 \cdot 0.1+0.25 \cdot 0.05=0.0875=8.75 \% . \\
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.75 \cdot r_{A}+0.25 \cdot r_{B}\right) \\
& =(0.75)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.25)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.75 \cdot 0.25 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.75)^{2} \cdot(0.2)^{2}+(0.25)^{2} \cdot(0.15)^{2}+2 \cdot 0.75 \cdot 0.25 \cdot 0.5 \cdot 0.2 \cdot 0.15 \approx 0.0295 .
\end{aligned}
$$

$$
\operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0295} \approx 0.1718=17.18 \% .
$$

$\mathrm{w}=0.5$:

$$
\begin{aligned}
& E\left[r_{P}\right]=E\left[0.5 \cdot r_{A}+0.5 \cdot r_{B}\right]=0.5 \cdot E\left[r_{A}\right]+0.5 \cdot E\left[r_{B}\right] \\
& =0.5 \cdot 0.1+0.5 \cdot 0.05=0.075=7.5 \% . \\
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.5 \cdot r_{A}+0.5 \cdot r_{B}\right) \\
& =(0.5)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.5)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.5 \cdot 0.5 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.5)^{2} \cdot(0.2)^{2}+(0.5)^{2} \cdot(0.15)^{2}+2 \cdot 0.5 \cdot 0.5 \cdot 0.5 \cdot 0.2 \cdot 0.15 \approx 0.0231 .
\end{aligned}
$$

$$
\operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0231} \approx 0.152=15.2 \%
$$

$\mathrm{w}=0.75$:

$$
\begin{aligned}
& E\left[r_{P}\right]=E\left[0.25 \cdot r_{A}+0.75 \cdot r_{B}\right]=0.25 \cdot E\left[r_{A}\right]+0.75 \cdot E\left[r_{B}\right] \\
& =0.25 \cdot 0.1+0.75 \cdot 0.05=0.0625=6.25 \% . \\
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.25 \cdot r_{A}+0.75 \cdot r_{B}\right) \\
& =(0.25)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.75)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.25 \cdot 0.75 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.25)^{2} \cdot(0.2)^{2}+(0.75)^{2} \cdot(0.15)^{2}+2 \cdot 0.25 \cdot 0.75 \cdot 0.5 \cdot 0.2 \cdot 0.15 \approx 0.0208 .
\end{aligned}
$$

$\operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0208} \approx 0.1422=14.22 \%$.

Open Yale courses

9) Yale University 2012. Most of the lectures and course material within Open Yale Courses are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 license. Unless explicitly set forth in the applicable Credits section of a lecture, third-party content is not covered under the Creative Commons license. Please consult the Open Yale Courses Terms of Use for limitations and further explanations on the application of the Creative Commons license.

In summary,

Weight	Expected Return	Return Standard Deviation
$\mathrm{w}=0.75$	8.75%	17.18%
$\mathrm{w}=0.50$	7.50%	15.20%
$\mathrm{w}=0.25$	6.25%	14.22%

(b) The expected return of each of the three portfolios is not affected by the change in the correlation between assets A and B . It is therefore only necessary to re-compute the return standard deviation for each of the three portfolios.
$\mathrm{w}=0.75$:

$$
\begin{aligned}
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.75 \cdot r_{A}+0.25 \cdot r_{B}\right) \\
& =(0.75)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.25)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.75 \cdot 0.25 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.75)^{2} \cdot(0.2)^{2}+(0.25)^{2} \cdot(0.15)^{2}+2 \cdot 0.75 \cdot 0.25 \cdot(-0.5) \cdot 0.2 \cdot 0.15 \approx 0.0183 .
\end{aligned}
$$

$$
\operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0183} \approx 0.1353=13.53 \%
$$

$\mathrm{w}=0.5$:

$$
\begin{aligned}
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.5 \cdot r_{A}+0.5 \cdot r_{B}\right) \\
& =(0.5)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.5)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.5 \cdot 0.5 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.5)^{2} \cdot(0.2)^{2}+(0.5)^{2} \cdot(0.15)^{2}+2 \cdot 0.5 \cdot 0.5 \cdot(-0.5) \cdot 0.2 \cdot 0.15 \approx 0.0081 .
\end{aligned}
$$

$$
\operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0081}=0.09=9 \%
$$

$\mathrm{w}=0.25$

$$
\begin{aligned}
& \operatorname{Var}\left(r_{P}\right)=\operatorname{Var}\left(0.25 \cdot r_{A}+0.75 \cdot r_{B}\right) \\
& =(0.25)^{2} \cdot \operatorname{Var}\left(r_{A}\right)+(0.75)^{2} \cdot \operatorname{Var}\left(r_{B}\right)+2 \cdot 0.25 \cdot 0.75 \cdot \operatorname{Corr}\left(r_{A}, r_{B}\right) \cdot \operatorname{Std}\left(r_{A}\right) \cdot \operatorname{Std}\left(r_{B}\right) \\
& =(0.25)^{2} \cdot(0.2)^{2}+(0.75)^{2} \cdot(0.15)^{2}+2 \cdot 0.25 \cdot 0.75 \cdot(-0.5) \cdot 0.2 \cdot 0.15 \approx 0.0095 . \\
& \operatorname{Std}\left(r_{P}\right)=\sqrt{\operatorname{Var}\left(r_{P}\right)} \approx \sqrt{0.0095} \approx 0.0975=9.75 \% .
\end{aligned}
$$

In summary,

Weight	Expected Return	Return Standard Deviation
$\mathrm{w}=0.75$	8.75%	13.53%
$\mathrm{w}=0.50$	7.50%	9.00%
$\mathrm{w}=0.25$	6.25%	9.75%

Observe the following two properties:

- The two assets that are used to construct each of the above portfolios have standard deviation 20% and 15%. However, there are multiple portfolios whose standard deviation is lower than the standard deviation of the two building blocks. This is a manifestation of the principle of diversification.
- For each of the three portfolio weights, the return standard deviation for 0.5 correlation is strictly lower than the standard deviation for 0.5 correlation. This is a manifestation of the principle that lower correlation provides diversification benefits, which only holds as long as the portfolio weights are between 0 and 1, which they all are in this problem.

