CHEM 125b - Lecture 28 - Mechanism and Equilibrium of Carbonyl Reactions

Lecture 28 - Mechanism and Equilibrium of Carbonyl Reactions

Overview

This lecture aims at developing facility with devising plausible mechanisms for acid- and base-catalyzed reactions of carbonyl compounds, carboxylic acids, and their derivatives. When steric hindrance inhibits the A/D mechanism of Fischer esterification, an acid-catalyzed D/A mechanism can still occur. Substituent influence on the equilibrium constants for carbonyl hydration demonstrates four effects: bond strength, steric, electron withdrawal, and conjugation. Cyclic acetals play an important role in protecting the carbonyl groups of sugars, but acetals also can be used to protect alcohols, as can silyl ethers. Using amines instead of alcohols allows converting carbonyl compounds to imines via carbinolamines.

Resources

Professor McBride's website resource for CHEM 125b (Spring 2011)

https://webspace.yale.edu/chem125/

This website may include third-party materials pertaining to relevant topics, provided for the user's convenience. Yale does not control or take responsibility for the content of any off-site pages or linked sites.

Course Media

Transcript

html

Audio

mp3

Low Bandwidth Video

mov [100MB]

High Bandwidth Video

mov [500MB]